
3/16/09

1

Spring 2009 CSE30264 1

Congestion Control

Outline
Resource Allocation
Queuing
TCP Congestion Control

Spring 2009 CSE30264 2

Issues
•  Two sides of the same coin

–  pre-allocate resources so at to avoid congestion
–  control congestion if (and when) is occurs

•  Two points of implementation
–  hosts at the edges of the network (transport protocol)
–  routers inside the network (queuing discipline)

•  Underlying service model
–  best-effort (assume for now)
–  multiple qualities of service (later)

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Spring 2009 CSE30264 3

Framework
•  Connectionless flows

–  sequence of packets sent between source/destination pair
–  maintain soft state at the routers

•  Taxonomy
–  router-centric versus host-centric
–  reservation-based versus feedback-based
–  window-based versus rate-based

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

3/16/09

2

Spring 2009 CSE30264 4

Evaluation
•  Fairness
•  Power (ratio of throughput to delay)

Optimal
load Load

Spring 2009 CSE30264 5

Queuing Disciplines
•  First-In-First-Out (FIFO)

–  does not discriminate between traffic
sources

•  Fair Queuing (FQ)
–  explicitly segregates traffic based on

flows
–  ensures no flow captures more than its

share of capacity
–  variation: weighted fair queuing (WFQ)

•  Problem? Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

Arriving
packet

Next free
buffer

Free buffers Queued packets

Next to
transmit

(a)

Arriving
packet

Next to
transmit

(b) Drop

Spring 2009 CSE30264 6

FQ Algorithm
•  Suppose clock ticks each time a bit is transmitted
•  Let Pi denote the length of packet i
•  Let Si denote the time when start to transmit packet i
•  Let Fi denote the time when finish transmitting packet i
•  Fi = Si + Pi
•  When does router start transmitting packet i?

–  if before router finished packet i - 1 from this flow, then
immediately after last bit of packet i - 1 (Fi-1)

–  if no current packets for this flow, then start
transmitting when arrives (call this Ai)

•  Thus: Fi = MAX (Fi - 1, Ai) + Pi

3/16/09

3

Spring 2009 CSE30264 7

FQ Algorithm (cont)
•  For multiple flows

–  calculate Fi for each packet that arrives on each flow
–  treat all Fi’s as timestamps
–  next packet to transmit is one with lowest timestamp

•  Not perfect: can’t preempt current packet
•  Example

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10
F = 5

F = 10
F = 2

Flow 1
(arriving)

Flow 2
(transmitting)

Spring 2009 CSE30264 8

TCP Congestion Control

•  Idea
–  assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself
–  uses implicit feedback
–  ACKs pace transmission (self-clocking)

•  Challenge
–  determining the available capacity in the first place
–  adjusting to changes in the available capacity

Spring 2009 CSE30264 9

Additive Increase/Multiplicative
Decrease

•  Objective: adjust to changes in the available capacity
•  New state variable per connection: CongestionWindow

–  limits how much data source has in transit

 MaxWin = MIN(CongestionWindow,
 AdvertisedWindow)

 EffWin = MaxWin - (LastByteSent -
 LastByteAcked)

•  Idea:
–  increase CongestionWindow when congestion goes down
–  decrease CongestionWindow when congestion goes up

3/16/09

4

Spring 2009 CSE30264 10

AIMD (cont)

•  Question: how does the source determine whether
or not the network is congested?

•  Answer: a timeout occurs
–  timeout signals that a packet was lost
–  packets are seldom lost due to transmission error
–  lost packet implies congestion

Spring 2009 CSE30264 11

AIMD (cont)

•  In practice: increment a little for each ACK
 Increment = MSS * (MSS/CongestionWindow)
 CongestionWindow += Increment

•  Algorithm
–  increment CongestionWindow by

one packet per RTT (linear increase)
–  divide CongestionWindow by two

whenever a timeout occurs
(multiplicative decrease)

Source Destination

Spring 2009 CSE30264 12

AIMD (cont)

•  Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

10.0

3/16/09

5

Spring 2009 CSE30264 13

Slow Start

•  Objective: determine the available
capacity in the beginning

•  Idea:
–  begin with CongestionWindow = 1

packet
–  double CongestionWindow each RTT

(increment by 1 packet for each ACK)

Source Destination

Spring 2009 CSE30264 14

Slow Start (cont)
•  Exponential growth, but slower than all at once
•  Used…

–  when first starting connection
–  when connection goes dead waiting for timeout

•  Trace

•  Problem: lose up to half a CongestionWindow’s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

Spring 2009 CSE30264 15

Fast Retransmit and Fast Recovery

•  Problem: coarse-grain
TCP timeouts lead to idle
periods

•  Fast retransmit: use
duplicate ACKs to trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

3/16/09

6

Spring 2009 CSE30264 16

Results

•  Fast recovery
–  skip the slow start phase
–  go directly to half the last successful

CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Time (seconds)

70

30
40
50

10

