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Issues

* Two sides of the same coin
— pre-allocate resources so at to avoid congestion
— control congestion if (and when) is occurs
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» Two points of implementation
— hosts at the edges of the network (transport protocol)
— routers inside the network (queuing discipline)
« Underlying service model
— best-effort (assume for now)
— multiple qualities of service (later)
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Framework

+ Connectionless flows
— sequence of packets sent between source/destination pair
— maintain soff state at the routers
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¢ Taxonomy
— router-centric versus host-centric
— reservation-based versus feedback-based
— window-based versus rate-based
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Evaluation
* Fairness
» Power (ratio of throughput to delay)
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Queuing Disciplines
« First-In-First-Out (FIFO) = SR
— does not discriminate between traffic 4,__»
sources D
 Fair Queuing (FQ)
— explicitly segregates traffic based on

flows o
— ensures no flow captures more than its

N N
share of capacity D m
— variation: weighted fair queuing (WFQ) N\
* Problem? Font ]|
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FQ Algorithm

* Suppose clock ticks each time a bit is transmitted
» Let P, denote the length of packet i
+ Let S; denote the time when start to transmit packet i
+ Let F, denote the time when finish transmitting packet i
« F,=S,+P
* When does router start transmitting packet i?
— if before router finished packet 7 - 1 from this flow, then
immediately after last bit of packet i - 1 (F_)
— if no current packets for this flow, then start
transmitting when arrives (call this 4,)

« Thus: F;= MAX (F,_,, 4) + P,
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FQ Algorithm (cont)

* For multiple flows

— calculate F, for each packet that arrives on each flow
— treat all F;’s as timestamps
— next packet to transmit is one with lowest timestamp

» Not perfect: can’t preempt current packet

* Example
Flow 1 Flow 2
Flow 1 Flow 2 Output (arriving)  (transmitting)  Output
F=8 F =10 F=10
F=5 F=2
@ ®)
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TCP Congestion Control

¢ Idea

— assumes best-effort network (FIFO or FQ routers) each
source determines network capacity for itself

— uses implicit feedback
— ACKs pace transmission (self-clocking)
» Challenge
— determining the available capacity in the first place
— adjusting to changes in the available capacity
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Additive Increase/Multiplicative
Decrease

* Objective: adjust to changes in the available capacity
» New state variable per connection: CongestionWindow
— limits how much data source has in transit

MaxWin = MIN (CongestionWindow,
lvertisedWindow)
EffWin = MaxWin - (LastByteSent -
LastByteAcked)
* Idea:
— increase CongestionWindow when congestion goes down
— decrease CongestionWindow when congestion goes up
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AIMD (cont)

¢ Question: how does the source determine whether
or not the network is congested?

* Answer: a timeout occurs
— timeout signals that a packet was lost
— packets are seldom lost due to transmission error
— lost packet implies congestion
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AIMD (cont)

Source

9

estination

+ Algorithm

— increment CongestionWindow by
one packet per RTT (/inear increase)

— divide CongestionWindow by two
whenever a timeout occurs
(multiplicative decrease)

* In practice: increment a little for each ACK
Increment =

MSS * (MSS/CongestionWindow)
CongestionWindow += Increment
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AIMD (cont)

¢ Trace: sawtooth behavior
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Slow Start

Source Destination

* Objective: determine the available
capacity in the beginning

¢ Idea: 2
— begin with CongestionWindow = 1
packet
— double congestionWindow each RTT
(increment by 1 packet for each ACK)
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Slow Start (cont)

« Exponential growth, but slower than all at once
» Used...

— when first starting connection

— when connection goes dead waiting for timeout
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* Problem: lose up to half a CongestionWindow’s
worth of data
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Fast Retransmit and Fast Recovery

Sender Receiver
* Problem: coarse-grain paceet |
. . acket
TCP timeouts lead to idle Packet 3 AcK
. Packet 4| ACK 2
periods
) Packet § ACK 2
¢ Fast retransmit: use Packet 6 oz
duplicate ACKs to trigger A2
retransmission Retransmi
packet 3
ACK 6
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Results
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« Fast recovery
— skip the slow start phase

— go directly to half the last successful
CongestionWindow (ssthresh)
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