Congestion Control

Outline
Resource Allocation
Queuing
TCP Congestion Control

Spring 2009 CSE30264

3/16/09

Issues

* Two sides of the same coin
— pre-allocate resources so at to avoid congestion
— control congestion if (and when) is occurs

]
&
— s Soey
‘M Router |2 31
e Destinatio)
=
= Y -

=
1.5-Mbps T1 link

» Two points of implementation
— hosts at the edges of the network (transport protocol)
— routers inside the network (queuing discipline)
« Underlying service model
— best-effort (assume for now)
— multiple qualities of service (later)

Spring 2009 CSE30264

Framework

+ Connectionless flows
— sequence of packets sent between source/destination pair
— maintain soff state at the routers

_ Router
] Destinatiof
-)
N\ Router S

Router /
% - Destinatiop
I 2

¢ Taxonomy
— router-centric versus host-centric
— reservation-based versus feedback-based
— window-based versus rate-based

Spring 2009 CSE30264

Evaluation
* Fairness
» Power (ratio of throughput to delay)

kS
7}
3
3
5
3
2
5
3
3
£
e
Optimal Load
load
Spring 2009 CSE30264 4

3/16/09

Queuing Disciplines
« First-In-First-Out (FIFO) = SR
— does not discriminate between traffic 4,__»
sources D
 Fair Queuing (FQ)
— explicitly segregates traffic based on

flows o
— ensures no flow captures more than its

N N
share of capacity D m
— variation: weighted fair queuing (WFQ) N\
* Problem? Font]|

Spring 2009 CSE30264 5

Next
transmit

@ Free buffers Queued packets

orop

Round-robin
i

FQ Algorithm

* Suppose clock ticks each time a bit is transmitted
» Let P, denote the length of packet i
+ Let S; denote the time when start to transmit packet i
+ Let F, denote the time when finish transmitting packet i
« F,=S,+P
* When does router start transmitting packet i?
— if before router finished packet 7 - 1 from this flow, then
immediately after last bit of packet i - 1 (F_)
— if no current packets for this flow, then start
transmitting when arrives (call this 4,)

« Thus: F;= MAX (F,_,, 4) + P,

Spring 2009 CSE30264 6

FQ Algorithm (cont)

* For multiple flows

— calculate F, for each packet that arrives on each flow
— treat all F;’s as timestamps
— next packet to transmit is one with lowest timestamp

» Not perfect: can’t preempt current packet

* Example
Flow 1 Flow 2
Flow 1 Flow 2 Output (arriving) (transmitting) Output
F=8 F =10 F=10
F=5 F=2
@ ®)
Spring 2009 CSE30264 7

3/16/09

TCP Congestion Control

¢ Idea

— assumes best-effort network (FIFO or FQ routers) each
source determines network capacity for itself

— uses implicit feedback
— ACKs pace transmission (self-clocking)
» Challenge
— determining the available capacity in the first place
— adjusting to changes in the available capacity

Spring 2009 CSE30264 8

Additive Increase/Multiplicative
Decrease

* Objective: adjust to changes in the available capacity
» New state variable per connection: CongestionWindow
— limits how much data source has in transit

MaxWin = MIN (CongestionWindow,
lvertisedWindow)
EffWin = MaxWin - (LastByteSent -
LastByteAcked)
* Idea:
— increase CongestionWindow when congestion goes down
— decrease CongestionWindow when congestion goes up

Spring 2009 CSE30264 9

3/16/09

AIMD (cont)

¢ Question: how does the source determine whether
or not the network is congested?

* Answer: a timeout occurs
— timeout signals that a packet was lost
— packets are seldom lost due to transmission error
— lost packet implies congestion

Spring 2009 CSE30264

AIMD (cont)

Source

9

estination

+ Algorithm

— increment CongestionWindow by
one packet per RTT (/inear increase)

— divide CongestionWindow by two
whenever a timeout occurs
(multiplicative decrease)

* In practice: increment a little for each ACK
Increment =

MSS * (MSS/CongestionWindow)
CongestionWindow += Increment

Spring 2009 CSE30264

AIMD (cont)

¢ Trace: sawtooth behavior

70

60

50.

40

¥ 30

20

10
T T T T T T T T T !
1.0 20 30 40 50 60 70 80 90 10

Time (seconds)
Spring 2009

CSE30264

Slow Start

Source Destination

* Objective: determine the available
capacity in the beginning

¢ Idea: 2
— begin with CongestionWindow = 1
packet
— double congestionWindow each RTT
(increment by 1 packet for each ACK)

Spring 2009 CSE30264 13

3/16/09

Slow Start (cont)

« Exponential growth, but slower than all at once
» Used...

— when first starting connection

— when connection goes dead waiting for timeout

E 1

T T T T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

* Problem: lose up to half a CongestionWindow’s
worth of data

Spring 2009 CSE30264 14

Fast Retransmit and Fast Recovery

Sender Receiver
* Problem: coarse-grain paceet |
. . acket
TCP timeouts lead to idle Packet 3 AcK
. Packet 4| ACK 2
periods
) Packet § ACK 2
¢ Fast retransmit: use Packet 6 oz
duplicate ACKs to trigger A2
retransmission Retransmi
packet 3
ACK 6
Spring 2009 CSE30264 15

Results

70+

20
2 I

T T
1.0 2.0 3.0 4.0
Time (seconds)

« Fast recovery
— skip the slow start phase

— go directly to half the last successful
CongestionWindow (ssthresh)

Spring 2009 CSE30264

5.0

6.0

7.C

3/16/09

