
1

Spring 2009 CSE30264 1

Congestion Control

Outline
Congestion Avoidance
RED
TCP Vegas

Spring 2009 CSE30264 2

Congestion Avoidance
•  TCP’s strategy

–  control congestion once it happens
–  repeatedly increase load in an effort to find the point at which

congestion occurs, and then back off

•  Alternative strategy
–  predict when congestion is about to happen
–  reduce rate before packets start being discarded
–  call this congestion avoidance, instead of congestion control

•  Two possibilities
–  router-centric: DECbit and RED Gateways
–  host-centric: TCP Vegas

Spring 2009 CSE30264 3

DECbit
•  Add binary congestion bit to each packet header
•  Router

–  monitors average queue length over last busy+idle cycle

–  set congestion bit if average queue length >= 1
–  attempts to balance throughput against delay

Queue length

Current
time

Time
Current
cycle

Previous
cycle

Averaging
interval

2

Spring 2009 CSE30264 4

End Hosts

•  Destination echoes bit back to source
•  Source records how many packets resulted in set bit
•  If less than 50% of last window’s worth had bit set

–  increase CongestionWindow by 1 packet

•  If 50% or more of last window’s worth had bit set
–  decrease CongestionWindow by 0.875 times

Spring 2009 CSE30264 5

Random Early Detection (RED)

•  Notification is implicit
–  just drop the packet (TCP will timeout)
–  could make explicit by marking the packet

•  Early random drop
–  rather than wait for queue to become full, drop each

arriving packet with some drop probability whenever
the queue length exceeds some drop level

Spring 2009 CSE30264 6

RED Details
•  Compute average queue length

 AvgLen = (1 - Weight) * AvgLen +
 Weight * SampleLen

0 < Weight < 1 (usually 0.002)
SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen

Queue length

Instantaneous

Average

Time

3

Spring 2009 CSE30264 7

RED Details (cont)

•  Two queue length thresholds

 if AvgLen <= MinThreshold then
 enqueue the packet
 if MinThreshold < AvgLen < MaxThreshold then
 calculate probability P
 drop arriving packet with probability P
 if MaxThreshold <= AvgLen then
 drop arriving packet

Spring 2009 CSE30264 8

RED Details (cont)
•  Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/
 (MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

•  Drop Probability Curve
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

Spring 2009 CSE30264 9

Tuning RED
•  Probability of dropping a particular flow’s packet(s) is

roughly proportional to the share of the bandwidth that flow
is currently getting

•  MaxP is typically set to 0.02, meaning that when the average
queue size is halfway between the two thresholds, the
gateway drops roughly one out of 50 packets.

•  If traffic is bursty, then MinThreshold should be
sufficiently large to allow link utilization to be maintained at
an acceptably high level

•  Difference between two thresholds should be larger than the
typical increase in the calculated average queue length in one
RTT; setting MaxThreshold to twice MinThreshold is
reasonable for traffic on today’s Internet

4

Spring 2009 CSE30264 10

TCP Vegas
•  Idea: source watches for some sign that router’s queue is

building up and congestion will happen too; e.g.,
–  RTT grows
–  sending rate flattens

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0
Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Spring 2009 CSE30264 11

Algorithm
•  Let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)
•  If not overflowing the connection, then

 ExpectedRate = CongestionWindow/BaseRTT
•  Source calculates sending rate (ActualRate) once per

RTT
•  Source compares ActualRate with ExpectedRate

 Diff = ExpectedRate - ActualRate
 if Diff < α
 increase CongestionWindow linearly
 else if Diff > β
 decrease CongestionWindow linearly
 else
 leave CongestionWindow unchanged

Spring 2009 CSE30264 12

Algorithm (cont)

•  Parameters
-  α = 1 packet
-  β = 3 packets

70
60
50
40
30
20
10

Time (seconds)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

240
200
160
120
80
40

Time (seconds)

