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Congestion Avoidance 
•  TCP’s strategy 

–  control congestion once it happens 
–  repeatedly increase load in an effort to find the point at which 

congestion occurs, and then back off 

•  Alternative strategy 
–  predict when congestion is about to happen 
–  reduce rate before packets start being discarded 
–  call this congestion avoidance, instead of congestion control 

•  Two possibilities  
–  router-centric: DECbit and RED Gateways  
–  host-centric: TCP Vegas  
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DECbit 
•  Add binary congestion bit to each packet header 
•  Router 

–  monitors average queue length over last busy+idle cycle 

–  set congestion bit if average queue length >= 1 
–  attempts to balance throughput against delay 
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End Hosts 

•  Destination echoes bit back to source 
•  Source records how many packets resulted in set bit 
•  If less than 50% of last window’s worth had bit set  

–  increase CongestionWindow by 1 packet 

•  If 50% or more of last window’s worth had bit set  
–  decrease CongestionWindow by 0.875 times 
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Random Early Detection (RED) 

•  Notification is implicit  
–  just drop the packet (TCP will timeout) 
–  could make explicit by marking the packet 

•  Early random drop 
–  rather than wait for queue to become full, drop each 

arriving packet with some drop probability whenever 
the queue length exceeds some drop level 
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RED Details 
•  Compute average queue length 

  AvgLen = (1 - Weight) * AvgLen + 
            Weight * SampleLen 

0 < Weight < 1 (usually 0.002) 
SampleLen is queue length each time a packet arrives 
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RED Details (cont) 

•  Two queue length thresholds 

 if AvgLen <= MinThreshold then 
    enqueue the packet 
 if MinThreshold < AvgLen < MaxThreshold then 
    calculate probability P 
    drop arriving packet with probability P 
 if MaxThreshold <= AvgLen then  
    drop arriving packet 
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RED Details (cont) 
•  Computing probability P 

TempP = MaxP * (AvgLen - MinThreshold)/   
 (MaxThreshold - MinThreshold) 

P = TempP/(1 - count * TempP) 

•  Drop Probability Curve 
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Tuning RED 
•  Probability of dropping a particular flow’s packet(s) is 

roughly proportional to the share of the bandwidth that flow 
is currently getting 

•  MaxP is typically set to 0.02, meaning that when the average 
queue size is halfway between the two thresholds, the 
gateway drops roughly one out of 50 packets. 

•  If traffic is bursty, then MinThreshold should be 
sufficiently large to allow link utilization to be maintained at 
an acceptably high level  

•  Difference between two thresholds should be larger than the 
typical increase in the calculated average queue length in one 
RTT; setting MaxThreshold to twice MinThreshold is 
reasonable for traffic on today’s Internet 
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TCP Vegas 
•  Idea: source watches for some sign that router’s queue is 

building up and congestion will happen too; e.g., 
–  RTT grows 
–  sending rate flattens  
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Algorithm  
•  Let BaseRTT be the minimum of all measured RTTs 

(commonly the RTT of the first packet) 
•  If not overflowing the connection, then 

  ExpectedRate = CongestionWindow/BaseRTT 
•  Source calculates sending rate (ActualRate) once per 

RTT 
•  Source compares ActualRate with ExpectedRate 

 Diff = ExpectedRate - ActualRate 
 if Diff < α  
  increase CongestionWindow linearly 
 else if Diff > β 
  decrease CongestionWindow linearly 
 else 
  leave CongestionWindow unchanged 
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Algorithm (cont) 

•  Parameters  
-  α = 1 packet 
-  β = 3 packets 
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