
1

Spring 2009 CSE 30264 26

More Introduction

Outline
Computer Networks Overview
Statistical Multiplexing
Inter-Process Communication
Network Architecture
Performance Metrics
Implementation Issues

Spring 2009 CSE 30264 27

Building Blocks for Data
Communications

•  Nodes: PC, special-purpose hardware…
–  hosts
–  switches

•  Links: coax cable, optical fiber…
–  point-to-point

–  multiple access
■ ■ ■

(a)

(b)

Spring 2009 CSE 30264 28

Switched Networks

–  two or more nodes
connected by a link, or

–  two or more networks
connected by a node

•  A network can be defined recursively as...

2

Spring 2009 CSE 30264 29

Strategies

•  Circuit switching: carry bit streams
–  original telephone network

•  Packet switching: store-and-forward messages
–  Internet

Spring 2009 CSE 30264 30

Addressing and Routing

•  Address: byte-string that identifies a node
–  usually unique

•  Routing: process of forwarding messages to the
destination node based on its address

•  Types of addresses
–  unicast: node-specific
–  broadcast: all nodes on the network
–  multicast: some subset of nodes on the network

Spring 2009 CSE 30264 31

Multiplexing

•  Time-Division Multiplexing (TDM)
•  Frequency-Division Multiplexing (FDM)

L2

L3

R2

R3

L1 R1

Switch 1 Switch 2

3

Spring 2009 CSE 30264 32

Statistical Multiplexing

•  On-demand time-division
•  Schedule link on a per-packet basis
•  Packets from different sources interleaved on link
•  Buffer packets that are contending for the link
•  Buffer (queue) overflow is called congestion

■ ■ ■

Spring 2009 CSE 30264 33

Inter-Process Communication

•  Turn host-to-host connectivity into process-to-process
communication.

•  Fill gap between what applications expect and what the
underlying technology provides.

Host

HostHost

Channel

Application
Host

Application
Host

Spring 2009 CSE 30264 34

IPC Abstractions

•  Request/Reply
–  distributed file systems
–  digital libraries (web)

•  Stream-Based
–  video: sequence of frames

•  1/4 NTSC = 352x240 pixels
•  (352 x 240 x 24)/8=247.5KB
•  30 fps = 7500KBps = 60Mbps

–  video applications
•  on-demand video
•  video conferencing

4

Spring 2009 CSE 30264 35

What Goes Wrong in the Network?

•  Bit-level errors (electrical interference)
•  Packet-level errors (congestion)
•  Link and node failures

•  Packets are delayed
•  Packets are delivered out-of-order
•  Third parties eavesdrop

Spring 2009 CSE 30264 36

Layering
•  Use abstractions to hide complexity
•  Abstraction naturally lead to layering
•  Alternative abstractions at each layer

Hardware
Host-to-host connectivity

Request/reply
channel

Message stream
channel

Application programsApplication programs

Process-to-process channels
Host-to-host connectivity

Hardware

Spring 2009 CSE 30264 37

Protocols

•  Building blocks of a network architecture
•  Each protocol object has two different interfaces

–  service interface: operations on this protocol
–  peer-to-peer interface: messages exchanged with peer

•  Term “protocol” is overloaded
–  specification of peer-to-peer interface
–  module that implements this interface

5

Spring 2009 CSE 30264 38

Interfaces

Host 1 Host 2

Service
interface

Peer-to-peer
interface

High-level
object

High-level
object

Protocol Protocol

Spring 2009 39

Protocol Machinery

•  Protocol Graph
–  most peer-to-peer communication is indirect
–  peer-to-peer is direct only at hardware level

Host 1 Host 2
File

application Digital
library

application
Video

application File
application

Digital
library

application
Video

application

CSE 30264

Spring 2009 40

Machinery (cont.)
•  Encapsulation (header/body)
•  Multiplexing and Demultiplexing (demux key)

Host Host
Application

program Application
program

RRP
Data Data

HHP

RRP

HHP

Application
program Application

program

 RRP Data RRP Data

 HHP RRP Data

CSE 30264

6

How Does Data Pass Through
Layers?

•  Protocol implementations follow the layering model
–  by passing the output from a protocol in one layer to the input of a

protocol in the next
•  To achieve efficiency

–  rather than copy an entire packet, a pair of protocols in adjacent layers
pass a pointer to the packet

•  http://wps.prenhall.com/wps/media/objects/5959/6102815/layers.html
–  each computer contains a set of layered protocols
–  when an application sends data

•  it is placed in a packet, and the packet passes down through each layer of protocols

–  once it has passed through all layers of protocols on the sending computer
•  the packet leaves the computer and is transmitted across the physical network

–  when it reaches the receiving computer
•  the packet passes up through the layers of protocols

–  if the application on the receiver sends a response, the process is reversed
Spring 2009 CSE 30264 41

Headers

•  Each layer of protocol software performs computations
–  that insure the messages arrive as expected

•  To perform such computation, protocol software on the two machines
must exchange information
–  each layer on the sender prepends extra information onto the packet
–  the corresponding protocol layer on the receiver removes and uses the

extra information
•  Additional information added by a protocol is known as a header
•  Headers are added by protocol software on the sending computer

–  that is, the transport layer prepends a header, and then the Internet layer
prepends a header, and so on

•  In practice headers are not of uniform size
•  A physical layer header is optional

Spring 2009 CSE 30264 42

Spring 2009 CSE 30264 43

OSI Architecture

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

7

Spring 2009 CSE 30264 44

Internet Architecture
•  Defined by Internet Engineering Task Force (IETF)
•  Hourglass Design
•  Application vs Application Protocol (FTP, HTTP)

■ ■ ■

FTP

TCP UDP

IP

NET 1 NET 2 NET n

HTTP NV TFTP

Spring 2009 CSE 30264 45

Performance Metrics
•  Bandwidth (throughput)

–  data transmitted per time unit
–  link versus end-to-end
–  notation

•  KB = 210 bytes
•  Mbps = 106 bits per second

•  Latency (delay)
–  time to send message from point A to point B
–  one-way versus round-trip time (RTT)
–  components

Latency = Propagation + Transmit + Queue

Propagation = Distance / c

Transmit = Size / Bandwidth

•  Relative importance
–  1-byte: 1ms vs 100ms dominates 1Mbps vs 100Mbps
–  25MB: 1Mbps vs 100Mbps dominates 1ms vs 100ms

Spring 2009 CSE 30264 46

Delay x Bandwidth Product

•  Amount of data “in flight” or “in the pipe”
•  Usually relative to RTT
•  Example: 100ms x 45Mbps = 560KB

Bandwidth

Delay

8

CSE 30264 47

Client-Server Paradigm

Outline
Client-Server Paradigm
Types of Server Implementations

Spring 2009

What is a Server?

•  Provides specific kind of service
•  Examples:

–  web
–  email
–  database
–  printer
–  ftp
–  file
–  name
–  …

Spring 2009 CSE 30264 48

SERVER

CLIENTS

request
response

Client-Server Model

•  Relationship between two computers, where one
(server) provides a service and responds to service
requests and the other (client) issues such service
requests

•  Specific form of interaction known:
–  a server starts first and awaits contact
–  a client starts second and initiates the connection

Spring 2009 CSE 30264 49

9

Client-Server Model

Spring 2009 CSE 30264 50

Characteristics

•  Most instances of client-server interaction have the same
general characteristics

•  A client software:
–  is an arbitrary application program that becomes a client

temporarily when remote access is needed, but also performs other
computation

–  is invoked directly by a user, and executes only for one session
–  runs locally on a user's personal computer
–  actively initiates contact with a server
–  can access multiple services as needed, but usually contacts one

remote server at a time
–  does not require especially powerful computer hardware

Spring 2009 CSE 30264 51

Characteristics

•  A server software:
–  is a special-purpose, privileged program
–  is dedicated to providing one service that can handle multiple

remote clients at the same time
–  is invoked automatically when a system boots, and continues to

execute through many sessions
–  runs on a large, powerful computer
–  waits passively for contact from arbitrary remote clients
–  accepts contact from arbitrary clients, but offers a single service
–  may require powerful hardware and a sophisticated operating

system (OS)

Spring 2009 CSE 30264 52

10

Terminology

•  Term server refers to a program that waits passively for communication
–  not to the computer on which it executes

•  However, when a computer is dedicated to running one or more server
programs, the computer itself is sometimes called a server

•  Hardware vendors contribute to the confusion
–  because they classify computers that have fast CPUs, large memories, and

powerful operating systems as server machines

Spring 2009 CSE 30264 53

Requests and Responses

•  Once contact has been established, two-way
communication is possible (i.e., data can flow
from a client to a server or from a server to a
client)

•  In some cases, a client sends a series of requests
and the server issues a series of responses (e.g., a
database client might allow a user to look up more
than one item at a time)

Spring 2009 CSE 30264 54

Multiple Servers

•  Allowing a given computer to operate multiple servers is
useful because
–  the hardware can be shared
–  a single computer has lower system administration overhead than

multiple computer systems
–  experience has shown that the demand for a server is often

sporadic
•  a server can remain idle for long periods of time
•  an idle server does not use the CPU while waiting for a request

to arrive

•  If demand for services is low, consolidating servers on a
single computer can dramatically reduce cost
–  without significantly reducing performance

Spring 2009 CSE 30264 55

11

Multiple Clients

•  A computer can run:
–  a single client
–  multiple copies of a client that contact a given server
–  multiple clients that each contact a particular server

•  Allowing a computer to operate multiple clients is useful
–  because services can be accessed simultaneously

•  For example, a user can have three 3 windows open
simultaneously running three 3 applications:
–  one that retrieves and displays email
–  another that connects to a chat service
–  and a third running a web browser

Spring 2009 CSE 30264 56

Server Identification

•  The Internet protocols divide identification into two
pieces:
–  an identifier for the computer on which a server runs
–  an identifier for a service on the computer

•  Identifying a computer?
–  each computer in the Internet is assigned a unique 32-bit identifier

known as an Internet Protocol address (IP address)
–  a client must specify the server’s IP address
–  to make server identification easy for humans, each computer is

also assigned a name, and the Domain Name System (DNS) is
used to translate names into addresses

–  thus, a user specifies a name such as www.cisco.com rather than an
integer address

Spring 2009 CSE 30264 57

Identification

•  Identifying a service?
–  each service available in the Internet is assigned a unique 16-bit

identifier known as a protocol port number (or port number)
•  email  port number 25, and the web  port number 80

–  when a server begins execution
•  it registers with its local OS by specifying the port number for

its service
–  when a client contacts a remote server to request service

•  the request contains a port number
–  when a request arrives at a server

•  software on the server uses the port number in the request to
determine which application on the server computer should
handle the request (demultiplexing)

Spring 2009 CSE 30264 58

12

Summary

Spring 2009 CSE 30264 59

Concurrent Servers

•  Although a serial approach works in a few trivial cases,
most servers are concurrent
–  that is, a server uses more than one thread of control

•  Concurrent execution depends on the OS being used
•  Concurrent server code is divided into two pieces

–  a main program (thread)
–  a handler

•  The main thread accepts contact from a client and creates a
thread of control for the client

•  Each thread of control interacts with a single client and
runs the handler code

Spring 2009 CSE 30264 60

Concurrent Servers

•  After handling one client the thread terminates
•  The main thread keeps the server alive after

creating a thread to handle a request
–  the main thread waits for another request to arrive

•  If N clients are simultaneously using a concurrent
server, N+1 threads will be running:
–  the main thread (1) is waiting for additional requests
–  and N threads are each interacting with a single client

Spring 2009 CSE 30264 61

13

Pitfall: Circular Dependencies
•  In practice, the distinction blurs because a server for one service can act as a

client for another
–  for example, before it can fill in a web page, a web server may need to become a

client of a database
–  a server may also become the client of a security service (e.g., to verify that a client

is allowed to access the service).

•  Programmers must be careful to avoid circular dependencies among servers
–  for example, consider what can happen if a server for service X becomes a client of

service Y, which becomes a client of service Z, which becomes a client of X
–  the chain of requests can continue indefinitely until all three servers exhaust

resources
•  The potential for circularity is especially high when services are designed

independently
–  because no single programmer controls all servers

Spring 2009 CSE 30264 62

