
4/2/09

1

Spring 2009 CSE30264 1

Security

Outline
Encryption Algorithms
Authentication Protocols
Message Integrity Protocols
Key Distribution
Firewalls

Spring 2009 CSE30264 2

Friends and Enemies

•  Bob, Alice want to communicate “securely”
•  Trudy, the “intruder” may intercept, delete, add messages

Figure 7.1 goes here

Spring 2009 CSE30264 3

Overview
•  Cryptography functions

–  Secret key (e.g., DES)
–  Public key (e.g., RSA)
–  Message digest (e.g., MD5)

•  Security services
–  Privacy: preventing unauthorized release of information
–  Authentication: verifying identity of the remote participant
–  Integrity: making sure message has not been altered

Security

Cryptography
algorithms

Public
key

(e.g., RSA)

Secret
key

(e.g., DES)

Message
digest

(e.g., MD5)

Security
services

AuthenticationPrivacy Message
integrity

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key

4/2/09

2

Spring 2009 CSE30264 4

Secret Key (DES)

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Spring 2009 CSE30264 5

Symmetric Key

Substitution cipher: substituting one thing for another
–  monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Spring 2009 CSE30264 6

•  64-bit key (56-bits + 8-bit parity)
•  16 rounds •  Each Round

Initial permutation

Round 1

Round 2

Round 16

56-bit
key

Final permutation

+
F

L i ─ 1 R i ─ 1

R i

K i

L i

4/2/09

3

Spring 2009 CSE30264 7

•  Repeat for larger messages

Block1

IV

DES

Cipher1

Block2

DES

Block3

DES

Block4

DES

+

Cipher2 Cipher3 Cipher4

+++

Spring 2009 CSE30264 8

Public Key (RSA)

•  Encryption & Decryption
 c = memod n
 m = cdmod n

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key

Spring 2009 CSE30264 9

RSA (cont)
•  Choose two large prime numbers p and q (each 256 bits)
•  Multiply p and q together to get n
•  Choose the encryption key e, such that e and (p - 1) x (q - 1)

are relatively prime.
•  Two numbers are relatively prime if they have no common

factor greater than one
•  Compute decryption key d such that

 d*e = 1 mod ((p - 1) x (q - 1))
•  Construct public key as (e, n)
•  Construct private key as (d, n)
•  Discard (do not disclose) original primes p and q

4/2/09

4

Spring 2009 CSE30264 10

RSA Example

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

letter m m e c = m mod n e

l 12 1524832 17

c m = c mod n d
17 481968572106750915091411825223072000 12

c d letter
l

encrypt:

decrypt:

Spring 2009 CSE30264 11

Message Digest
•  Cryptographic checksum

–  just as a regular checksum protects the receiver from accidental
changes to the message, a cryptographic checksum protects the
receiver from malicious changes to the message.

•  One-way function
–  given a cryptographic checksum for a message, it is virtually

impossible to figure out what message produced that checksum; it
is not computationally feasible to find two messages that hash to
the same cryptographic checksum.

•  Relevance
–  if you are given a checksum for a message and you are able to

compute exactly the same checksum for that message, then it is
highly likely this message produced the checksum you were given.

Spring 2009 CSE30264 12

Authentication Protocols
•  Three-way handshake

Client Server
ClientId, E (, CHK)

E(y + , CHK)

E(SK, SHK)

Y

4/2/09

5

Spring 2009 CSE30264 13

•  Trusted third party (Kerberos)

AS B

E((T, L, K, B), KA),
E((A, T), K),

E((T, L, K, A), KB)

A, B

E(T + 1 , K)

 E ((T, L, K, A), KB)

Spring 2009 CSE30264 14

•  Public key authentication

A B

E (x , Public B)

x

Spring 2009 CSE30264 15

Message Integrity Protocols
•  Digital signature using RSA

–  special case of a message integrity where the code can only have been
generated by one participant

–  compute signature with private key and verify with public key
•  Keyed MD5

–  sender: m + MD5(m + k) + E(E(k,rcv_public), snd_private)
–  receiver

•  recovers random key using the sender’s public key
•  applies MD5 to the concatenation of this random key message

•  MD5 with RSA signature
–  sender: m + E(MD5(m), private)
–  receiver

•  decrypts signature with sender’s public key
•  compares result with MD5 checksum sent with message

4/2/09

6

Spring 2009 CSE30264 16

Public Key Distribution
•  Certificate

–  special type of digitally signed document:
“I certify that the public key in this document belongs to the entity named

in this document, signed X.”
–  the name of the entity being certified
–  the public key of the entity
–  the name of the certification authority
–  a digital signature

•  Certification Authority (CA)
–  administrative entity that issues certificates
–  useful only to someone that already holds the CA’s public key.

Spring 2009 CSE30264 17

Key Distribution (cont)

•  Chain of Trust
–  if X certifies that a certain public key belongs to Y, and

Y certifies that another public key belongs to Z, then
there exists a chain of certificates from X to Z

–  someone that wants to verify Z’s public key has to
know X’s public key and follow the chain

•  Certificate Revocation List

Spring 2009 CSE30264 18

Certificate
•  Serial number (unique to issuer)
•  info about certificate owner, including algorithm and key value itself

(not shown)
❒  info about

certificate
issuer

❒  valid dates
❒  digital

signature by
issuer

4/2/09

7

Spring 2009 CSE30264 19

Pretty Good Privacy (PGP)

•  PGP designed by Phillip Zimmerman for electronic mail
•  Uses three known techniques:

–  IDEA for encrypting email message
 International Data Exchange Algorithm
 block cipher with 64-bit blocks
 similar in concept but different in details from DES
 uses 128-bit keys
 patented, but free for non-commercial use

Spring 2009 CSE30264 20

Pretty Good Privacy (PGP)
–  RSA public key encryption

  permits keys up to 2,047 bits in length
–  Digital signatures use MD5 or SHA-1

•  PGP generates a random 128-bit symmetric key, used by IDEA for each email
message

•  PGP generates its own public/private key pairs
•  Keys are stored locally using a hashed pass phrase
•  PGP does not use conventional certificates (too expensive)
•  Instead,

–  users generate and distribute their own public keys
–  sign each other’s public keys
–  save trusted public keys on public-key ring
–  users build a web of trust
–  users determine how much to trust

Spring 2009 CSE30264 21

Pretty Good Privacy (PGP)

•  Encryption and authentication for email.

Sender identity and message
integrity confirmed
if checksums match

Calculate MD5 checksum on
received message and compare

against received value

Decrypt signed checksum
with senderÕs public key

Calculate MD5 checksum
over message contents

Sign checksum using RSA
with senderÕs private key

Transmitted message

4/2/09

8

Spring 2009 CSE30264 22

PGP (cont)

Decrypt message using
DES with secret key k

Decrypt E (k) using RSA with
my private key k

Convert ASCII message

Encrypt k using RSA with
recipient ‘ s public key

Encode message + E (k)
in ASCII for transmission

Encrypt message using
DES with secret key k

Create a random secret key k Original message

Transmitted message

Spring 2009 CSE30264 23

GPG: Gnu Privacy Guard

•  GPG is primarily meant for securing email:
–  can also use it to encrypt/decrypt/sign any message...
–  free alternative to PGP
–  http://www.gpg.org

•  Allows you to:
–  create public/private key pairs
–  encrypt/decrypt messages
–  sign/check messages

Spring 2009 CSE30264 24

GPG

•  Create your own public/private key pair:
gpg --gen-keys
–  you will be asked several questions: which kind of key you want,

which size, how long it will stay valid, username, email address,
etc. (keep default values)

–  then it will ask you for a passphrase:
•  type any passphrase (e.g., “I like rabbits very much”)
•  your private key will be encrypted with the passphrase before storing

on disk
•  GPG will ask you for your passphrase each time it needs to access

your private key

4/2/09

9

Spring 2009 CSE30264 25

Distributing Your Public Key

•  You can give it to anyone:
–  people who may want to communicate with you using GPG
–  never hand out your private key

•  What’s my public key?
gpg --export --armor <Your_Name>

•  You can add somebody else’s public key to your keyring:
gpg --import <filename>

•  You can list the keys in your keyring:
gpg --list-keys

Spring 2009 CSE30264 26

Encryption/Decryption with GPG

•  Encryption:
–  must specify the destination of your message, message

will be encrypted with the recipient’s public key (key
must be in key ring)

gpg --armor --encrypt -r <recipient> < <file_to_encrypt>

•  Decryption:
–  GPG will use your private key to decrypt a received

file, you will be asked for your passphrase
gpg --decrypt < <file_to_decrypt>

Spring 2009 CSE30264 27

Signatures with GPG

•  Sign a message (you will be asked for your passphrase):
gpg --output <output_file> --clearsign <document_to_sign>
–  message and signature will be written to output_file

•  Check a signature:
gpg --verify <document_to_check>

•  You can encrypt and sign a document:
gpg --armor --sign --encrypt -r cpoellab@cse.nd.edu < message

•  To decrypt and check:
gpg --decrypt <encrypted_and_signed_message>

4/2/09

10

Spring 2009 CSE30264 28

Secure Shell (SSH)

•  Remote login service (replaces telnet and rlogin).
•  Provides authentication, integrity, and confidentiality.
•  SSH version 2: SSH-TRANS, SSH-AUTH, SSH-CONN.

Application
client

Application
server

SSH SSH
Forwarded connection

Direct connection

Host A Host B

Spring 2009 CSE30264 29

Transport Layer Security (TLS)

•  Secure Socket Layer (SSL).
•  Secure HTTP (HTTPS).
•  Handshake protocol and record protocol.

Application (e.g., HTTP)
Secure transport layer

TCP
IP

Subnet

Spring 2009 CSE30264 30

Firewalls

•  Filter-Based Solution
–  example

 (192.12.13.14, 1234, 128.7.6.5, 80)
 (*,*, 128.7.6.5, 80)

–  default: forward or not forward?
–  how dynamic?

Rest of the Internet Local site

Firewall

4/2/09

11

Spring 2009 CSE30264 31

Proxy-Based Firewalls
•  Problem: complex policy
•  Example: web server

•  Solution: proxy

•  Design: transparent vs. classical
•  Limitations: attacks from within

Company net Web
server

Random
external
user

Remote
company
user

Internet

Firewall

Firewall

External
client

External HTTP/TCP connection

Proxy

Internal HTTP/TCP connection

Local
server

Spring 2009 CSE30264 32

Denial of Service

–  flood of maliciously generated packets “swamp”
receiver

–  Distributed DOS (DDOS): multiple coordinated sources
swamp receiver

–  e.g., C and remote host SYN-attack A
A

B

C

SYN

SYN SYN SYN

SYN
SYN

SYN

Spring 2009 CSE30264 33

Packet Sniffing

–  broadcast media
–  promiscuous NIC reads all packets passing by
–  can read all unencrypted data (e.g. passwords)
–  e.g.: C sniffs B’s packets

A

B

C

src:B dest:A payload

4/2/09

12

Spring 2009 CSE30264 34

IP Spoofing

–  can generate “raw” IP packets directly from
application, putting any value into IP source address
field

–  receiver can’t tell if source is spoofed
–  e.g.: C pretends to be B

A

B

C

src:B dest:A payload

