
1

Spring 2009 CS30264 1

Peer-to-Peer Networks

Outline
Domain Name System
Peer-to-Peer Networks

Spring 2009 CS30264 2

P2P

•  Overview:
–  centralized database: Napster
–  query flooding: Gnutella
–  intelligent query flooding: KaZaA
–  swarming: BitTorrent
–  unstructured overlay routing: Freenet
–  structured overlay routing: Distributed Hash Tables

Spring 2009 CS30264 3

Napster

•  Centralized Database:
–  Join: on startup, client contacts central server
–  Publish: reports list of files to central server
–  Search: query the server => return someone that stores

the requested file
–  Fetch: get the file directly from peer

2

Spring 2009 CS30264 4

Gnutella

•  Query Flooding:
–  Join: on startup, client contacts a few other

nodes; these become its “neighbors”
– Publish: no need
– Search: ask neighbors, who ask their

neighbors, and so on... when/if found, reply to
sender.

– Fetch: get the file directly from peer

Spring 2009 CS30264 5

KaZaA (Kazaa)

•  In 2001, Kazaa created by Dutch company KaZaA BV.
•  Single network called FastTrack used by other clients as

well: Morpheus, giFT, etc.
•  Eventually protocol changed so other clients could no

longer talk to it.
•  2004: 2nd most popular file sharing network, 1-5million at

any given time, about 1000 downloads per minute. (June
2004, average 2.7 million users, compare to BitTorrent: 8
million)

Spring 2009 CS30264 6

KaZaA

•  “Smart” Query Flooding:
–  Join: on startup, client contacts a “supernode” ... may at some

point become one itself
–  Publish: send list of files to supernode
–  Search: send query to supernode, supernodes flood query amongst

themselves.
–  Fetch: get the file directly from peer(s); can fetch simultaneously

from multiple peers

3

Spring 2009 CS30264 7

KaZaA
“Super Nodes”

Spring 2009 CS30264 8

KaZaA: File Insert

I have X!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

Spring 2009 CS30264 9

KaZaA: File Search

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

Where is file A?

4

Spring 2009 CS30264 10

KaZaA: Fetching

•  More than one node may have requested file...
•  How to tell?

–  must be able to distinguish identical files
–  not necessarily same filename
–  same filename not necessarily same file...

•  Use Hash of file
–  KaZaA uses UUHash: fast, but not secure
–  alternatives: MD5, SHA-1

•  How to fetch?
–  get bytes [0..1000] from A, [1001...2000] from B

Spring 2009 CS30264 11

KaZaA

•  Pros:
–  tries to take into account node heterogeneity:

•  bandwidth
•  host computational resources

–  rumored to take into account network locality

•  Cons:
–  mechanisms easy to circumvent
–  still no real guarantees on search scope or search time

Spring 2009 CS30264 12

BitTorrent

•  In 2002, B. Cohen debuted BitTorrent
•  Key motivation:

–  popularity exhibits temporal locality (flash crowds)
–  e.g., Slashdot effect, CNN on 9/11, new movie/game release

•  Focused on efficient Fetching, not Searching:
–  distribute the same file to all peers
–  files split up in pieces (typically 250kBytes)
–  single publisher, multiple downloaders
–  each downloader becomes a publisher (while still downloading)

•  Has some “real” publishers:
–  Blizzard Entertainment using it to distribute the beta of their new games

5

Spring 2009 CS30264 13

BitTorrent

•  Swarming:
–  Join: contact centralized “tracker” server, get a list of

peers.
–  Publish: run a tracker server.
–  Search: out-of-band, e.g., use Google to find a tracker

for the file you want.
–  Fetch: download chunks of the file from your peers.

Upload chunks you have to them.

Spring 2009 CS30264 14

BitTorrent: Publish/Join
Tracker

Spring 2009 CS30264 15

BitTorrent: Fetch

6

Spring 2009 CS30264 16

BitTorrent: Sharing Strategy

•  Employ “Tit-for-tat” sharing strategy
–  “I’ll share with you if you share with me”
–  be optimistic: occasionally let freeloaders download

•  otherwise no one would ever start!
•  also allows you to discover better peers to download from when they

reciprocate

•  Approximates Pareto Efficiency
–  game theory: “No change can make anyone better off without

making others worse off”

Spring 2009 CS30264 17

BitTorrent

•  Pros:
–  works reasonably well in practice
–  gives peers incentive to share resources; avoids

freeloaders

•  Cons:
–  central tracker server needed to bootstrap swarm

Spring 2009 CS30264 18

Freenet

•  In 1999, I. Clarke started the Freenet project
•  Basic idea:

–  employ Internet-like routing on the overlay network to
publish and locate files

•  Additional goals:
–  provide anonymity and security
–  make censorship difficult

7

Spring 2009 CS30264 19

FreeNet

•  Routed Queries:
–  Join: on startup, client contacts a few other nodes it knows about;

gets a unique node id
–  Publish: route file contents toward the file id. File is stored at node

with id closest to file id
–  Search: route query for file id toward the closest node id
–  Fetch: when query reaches a node containing file id, it returns the

file to the sender

Spring 2009 CS30264 20

Distributed Hash Tables DHT

•  In 2000-2001, academic researchers said “we want to play too!”
•  Motivation:

–  Frustrated by popularity of all these “half-baked” P2P apps :)
–  We can do better! (so we said)
–  Guaranteed lookup success for files in system
–  Provable bounds on search time
–  Provable scalability to millions of node

•  Hot Topic in networking ever since

Spring 2009 CS30264 21

DHT

•  Abstraction: a distributed “hash-table” (DHT) data
structure:
–  put(id, item);
–  item = get(id);

•  Implementation: nodes in system form a distributed data
structure
–  Can be Ring, Tree, Hypercube, Skip List, Butterfly Network, ...

8

Spring 2009 CS30264 22

DHT

•  Structured Overlay Routing:
–  Join: On startup, contact a “bootstrap” node and integrate yourself

into the distributed data structure; get a node id
–  Publish: Route publication for file id toward a close node id along

the data structure
–  Search: Route a query for file id toward a close node id. Data

structure guarantees that query will meet the publication.
–  Fetch: Two options:

•  Publication contains actual file => fetch from where query stops
•  Publication says “I have file X” => query tells you 128.2.1.3 has X,

use IP routing to get X from 128.2.1.3

Spring 2009 CS30264 23

DHT Example: Chord

•  Associate to each node and file a unique id in an
uni-dimensional space (a Ring)
–  E.g., pick from the range [0...2m]
–  Usually the hash of the file or IP address

•  Properties:
–  Routing table size is O(log N) , where N is the total

number of nodes
–  Guarantees that a file is found in O(log N) hops

Spring 2009 CS30264 24

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

9

Spring 2009 CS30264 25

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

Spring 2009 CS30264 26

DHT: Chord Finger Table

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

•  Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

•  In other words, the ith finger points 1/2n-i way around the ring

Spring 2009 CS30264 27

DHT: Chord Join
•  Assume an identifier space [0..7]

•  Node n1 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

10

Spring 2009 CS30264 28

DHT: Chord Join

•  Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

Spring 2009 CS30264 29

DHT: Chord Join

•  Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

Spring 2009 CS30264 30

DHT: Chord Join
•  Nodes:

n1, n2, n0, n6

•  Items:
f7, f1

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

11

Spring 2009 CS30264 31

DHT: Chord Routing
•  Upon receiving a query for item

id, a node:
•  Checks whether stores the item

locally
•  If not, forwards the query to the

largest node in its successor table
that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

Spring 2009 CS30264 32

DHT

•  Pros:
–  Guaranteed Lookup
–  O(log N) per node state and search scope

•  Cons:
–  No one uses them? (only one file sharing app)
–  Supporting non-exact match search is hard

Spring 2009 CS30264 33

P2P Summary

•  Many different styles; remember pros and cons of each
–  centralized, flooding, swarming, unstructured and structured routing

•  Lessons learned:
–  Single points of failure are very bad
–  Flooding messages to everyone is bad
–  Underlying network topology is important
–  Not all nodes are equal
–  Need incentives to discourage freeloading
–  Privacy and security are important
–  Structure can provide theoretical bounds and guarantees

