
1

Spring 2009 CSE 30264 1

Outline
Parity
Checksum
CRC

Error Detection

Spring 2009 CSE 30264 2

2-Dimensional Parity

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

Spring 2009 CSE 30264 3

Internet Checksum Algorithm
•  View message as a sequence of 16-bit integers; sum using

16-bit ones-complement arithmetic; take ones-complement
of the result.

u_short
cksum(u_short *buf, int count)
{
 register u_long sum = 0;
 while (count--)
 {
 sum += *buf++;
 if (sum & 0xFFFF0000)
 {
 /* carry occurred, so wrap around */
 sum &= 0xFFFF;
 sum++;
 }
 }
 return ~(sum & 0xFFFF);
}

2

Spring 2009 CSE 30264 4

Cyclic Redundancy Check

•  Add k bits of redundant data to an n-bit message
–  want k << n
–  e.g., k = 32 and n = 12,000 (1500 bytes)

•  Represent n-bit message as n-1 degree polynomial
–  e.g., MSG=10011010 as M(x) = x7 + x4 + x3 + x1

•  Let k be the degree of some divisor polynomial
–  e.g., C(x) = x3 + x2 + 1

Spring 2009 CSE 30264 5

CRC (cont)
•  Transmit polynomial P(x) that is evenly divisible

by C(x)
–  shift left k bits, i.e., M(x)xk
–  subtract remainder of M(x)xk / C(x) from M(x)xk

•  Receiver polynomial P(x) + E(x)
–  E(x) = 0 implies no errors

•  Divide (P(x) + E(x)) by C(x); remainder zero if:
–  E(x) was zero (no error), or
–  E(x) is exactly divisible by C(x)

Spring 2009 CSE 30264 6

Selecting C(x)
•  All single-bit errors, as long as the xk and x0 terms have

non-zero coefficients.
•  All double-bit errors, as long as C(x) contains a factor with

at least three terms
•  Any odd number of errors, as long as C(x) contains the

factor (x + 1)
•  Any ‘burst’ error (i.e., sequence of consecutive error bits)

for which the length of the burst is less than k bits.
•  Most burst errors of larger than k bits can also be detected
•  See Table 2.5 on page 96 for common C(x)

3

Spring 2009 CSE 30264 7

Hardware Implementation

x0 x1 XOR gate x2

Message

Spring 2009 CSE 30264 8

Acknowledgements & Timeouts
Sender Receiver

Frame

ACK

Sender Receiver

Frame

ACK

Frame

ACK

Sender Receiver

Frame

ACK
Frame

ACK

Sender Receiver

Frame

Frame

ACK

(a) (c)

(b) (d)

Spring 2009 CSE 30264 9

Stop-and-Wait
Sender Receiver

Frame 0

ACK 0

Frame 1

ACK 1

Frame 0

ACK 0

4

Spring 2009 CSE 30264 10

Stop-and-Wait

•  Problem: keeping the pipe full
•  Example

–  1.5Mbps link x 45ms RTT = 67.5Kb (8KB)
–  1KB frames implies 1/8th link utilization

Sender Receiver

Spring 2009 CSE 30264 11

Sliding Window
•  Allow multiple outstanding (un-ACKed) frames
•  Upper bound on un-ACKed frames, called window

Sender Receiver

Spring 2009 CSE 30264 12

SW: Sender
•  Assign sequence number to each frame (SeqNum)
•  Maintain three state variables:

–  send window size (SWS)
–  last acknowledgment received (LAR)
–  last frame sent (LFS)

•  Maintain invariant: LFS - LAR <= SWS

•  Advance LAR when ACK arrives
•  Buffer up to SWS frames

< SWS

LAR LFS

■ ■ ■ ■ ■ ■
─

5

Spring 2009 CSE 30264 13

SW: Receiver

•  Maintain three state variables
–  receive window size (RWS)
–  largest acceptable frame (LAF)
–  last frame received (LFR)

•  Maintain invariant: LAF - LFR <= RWS

•  Frame SeqNum arrives:
–  if LFR < SeqNum < = LFA accept
–  if SeqNum < = LFR or SeqNum > LFA discarded

•  Send cumulative ACKs

 RWS

LFR LAF

■ ■ ■ ■ ■ ■

<
─

Spring 2009 CSE 30264 14

Sequence Number Space
•  SeqNum field is finite; sequence numbers wrap around
•  Sequence number space must be larger than number of

outstanding frames
•  SWS <= MaxSeqNum-1 is not sufficient

–  suppose 3-bit SeqNum field (0..7)
–  SWS=RWS=7
–  sender transmit frames 0..6
–  arrive successfully, but ACKs lost
–  sender retransmits 0..6
–  receiver expecting 7, 0..5, but receives second incarnation of 0..5

•  SWS < (MaxSeqNum+1)/2 is correct rule
•  Intuitively, SeqNum “slides” between two halves of

sequence number space

