
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Internet Checksum Algorithm - View message as a sequence of 16 -bit integers; sum using 16-bit ones-complement arithmetic; take ones-complement of the result.
cksum(u_short *buf, int count) register u long sum $=0$; while (count--) sum += *buf++; if (sum \& OxFFFF0000) /* carry occurred, so wrap around */ sum $\&=0 \times F F F F$; sum++; return $\sim($ sum \& 0xFFFF) ;
Spring 2099 CSE 3264 ${ }^{\text {c }}$

Cyclic Redundancy Check

- Add k bits of redundant data to an n-bit message - want $k \ll n$
- e.g., $k=32$ and $n=12,000$ (1500 bytes)
- Represent n-bit message as n - 1 degree polynomial - e.g., MSG $=10011010$ as $M(x)=x^{7}+x^{4}+x^{3}+x^{1}$
- Let k be the degree of some divisor polynomial - e.g., $C(x)=x^{3}+x^{2}+1$

Spring 2009
CSE 30264

CRC (cont)

- Transmit polynomial $P(x)$ that is evenly divisible by $C(x)$
- shift left k bits, i.e., $M(x) x^{k}$
- subtract remainder of $M(x) x^{k} / C(x)$ from $M(x) x^{k}$
- Receiver polynomial $P(x)+E(x)$
- $E(x)=0$ implies no errors
- Divide $(P(x)+E(x))$ by $C(x)$; remainder zero if:
- $E(x)$ was zero (no error), or
- $E(x)$ is exactly divisible by $C(x)$

Spring 2009
CSE 30264
5

Selecting $C(x)$

- All single-bit errors, as long as the x^{k} and x^{0} terms have non-zero coefficients.
- All double-bit errors, as long as $C(x)$ contains a factor with at least three terms
- Any odd number of errors, as long as $C(x)$ contains the factor $(x+1)$
- Any 'burst' error (i.e., sequence of consecutive error bits) for which the length of the burst is less than k bits.
- Most burst errors of larger than k bits can also be detected
- See Table 2.5 on page 96 for common $C(x)$ \qquad

Spring 2009
CSE 30264
${ }^{6}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

SW: Sender

- Assign sequence number to each frame (SeqNum)
\qquad
- Maintain three state variables
send window size (SWS)
last acknowledgment received (LAR) last frame sent (LFS)
- Maintain invariant: LFS - LAR <= SwS

Advance LAR when ACK arrives

- Buffer up to sws frames

\qquad

Sequence Number Space

- SeqNum field is finite; sequence numbers wrap around \qquad
- Sequence number space must be larger than number of outstanding frames
- SWS <= MaxSeqNum-1 is not sufficient \qquad
- suppose 3-bit SeqNum field (0..7)
- SWS=RWS=7
- sender transmit frames $0 . .6$
- arrive successfully, but ACKs lost
- sender retransmits $0 . .6$
- receiver expecting $7,0 . .5$, but receives second incarnation of $0 . .5$
- SWS < (MaxSeqNum+1)/2 is correct rule
- Intuitively, SeqNum "slides" between two halves of sequence number space

Spring 2009
CSE 30264
\qquad
\qquad
\qquad
\qquad

