
2/9/09

1

More Client/Server
Programming

Thread Programming
  fork() is expensive (time, memory)
  Interprocess communication is hard.
  Threads are ‘lightweight’ processes:

  one process can contain several threads of execution.
  all threads execute the same program (different stages).
  all threads share instructions, global memory, open files,

and signal handlers.
  each thread has own thread ID, stack, program counter

and stack pointer, errno, signal mask.
  threads can communicate with shared memory.
  threads have special synchronization mechanisms.

Thread Programming
  POSIX threads (pthreads): standard for Unix
  OS must support it (Linux)
  Programs must be linked with -lpthread

2/9/09

2

Pthreads
  Creating a thread:

#include <pthread.h>
int pthread_create(pthread_t *tid, pthread_attr_t

*attr, void *(*start_routine)(void *), void *arg);
  tid: thread id
  attr: options
  start_routine: function to be executed
  arg: parameter to thread

Pthreads
  Stopping a pthread: a thread stops when

  the process stops,
  the parent thread stops,
  its start_routine function return,
  or it calls pthread_exit:
#include <pthread.h>
void pthread_exit(void *retval);

Pthreads
  Threads must be waited for:

#include <pthread.h>
int pthread_join(pthread_t tid, void **status);

2/9/09

3

Pthreads Example
#include <pthread.h>

void *func(void *param) {
 int *p = (int *) param;
 printf(“This is a new thread (%d)\n”, *p);
 return NULL;
}
int main () {
 pthread_t id;
 int x = 100;

 pthread_create(&id, NULL, func, (void *) &x);
 pthread_join(id, NULL);
}

Pthreads
  A thread can be joinable or detached.
  Detached: on termination all thread

resources are released, does not stop when
parent thread stops, does not need to be
pthread_join()ed.

  Default: joinable (attached), on termination
thread ID and exit status are saved by OS.

Pthreads
  Creating a detached thread:

pthread_t id;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_DETACHED);
pthread_create(&id, &attr, func, NULL);

  pthread_detach()

2/9/09

4

Pthreads
  A thread can join another:

int pthread_join (pthread_t tid, void ** status);
  Call waits until specified thread exits.

Pthreads
int counter = 0;
void *thread_code (void *arg) {
 counter++;
 printf(“Thread %u is number %d\n”,
 pthread_self(), counter);
}
main () {
 int i; pthread_t tid;
 for (i = 0; i < 10; i++)
 pthread_create(&tid, NULL, thread_code, NULL);
}

Pthread
  Mutual exclusion:

pthread_mutex_t counter_mtx =
 PTHREAD_MUTEX_INITIALIZER;

  Locking (blocking call):
pthread_mutex_lock(pthread_mutex_t *mutex);

  Unlocking:
pthread_mutex_unlock(pthread_mutex_t *mutex);

2/9/09

5

Thread Pool
  A server creates a thread for each client. No

more than n threads can be active (or n
clients can be serviced). How can we let the
main thread know that a thread terminated
and that it can service a new client?

Possible Solutions
  pthread_join?

  kinda like wait().
  requires thread id, so we can wait for thread xy, but not for the

‘next’ thread

  Global variables?
  thread startup:

  acquire lock on the variable
  increment variable
  release lock

  thread termination:
  acquire lock on the variable
  decrement variable
  release lock

Main Loop?
active_threads = 0;
// start up first n threads for first n clients
// make sure they are running
while (1) {
 // have to lock/release active_threads;
 if (active_threads < n)
 // start up thread for next client
 busy_waiting(is_bad);
}

2/9/09

6

Condition Variables
  Allow one thread to wait/sleep for event generated by

another thread.
  Allows us to avoid busy waiting.

pthread_cond_t foo =
 PTHREAD_COND_INITIALIZER;

  Condition variable is ALWAYS used with a mutex.

pthread_cond_wait(pthread_cond_t *cptr,
 pthread_mutex_t *mptr);

pthread_cond_signal(pthread_cond_t *cptr);

Condition Variables
  Each thread decrements active_threads when

terminating and calls pthread_cond_signal() to
wake up main loop.

  The main thread increments active_threads
when a thread is started and waits for changes
by calling pthread_cond_wait.

  All changes to active_threads must be ‘within’ a
mutex.

  If two threads exit ‘simultaneously’, the second
one must wait until the first one is recognized by
the main loop.

  Condition signals are NOT lost.

Condition Variables
int active_threads = 0;
pthread_mutex_t at_mutex;
pthread_cond_t at_cond;

void *handler_fct(void *arg) {
 // handle client
 pthread_mutex_lock(&at_mutex);
 active_threads--;
 pthread_cond_signal(&at_cond);
 pthread_mutex_unlock(&at_mutex);
 return();
}

2/9/09

7

Condition Variables
active_threads = 0;
while (1) {
 pthread_mutex_lock(&at_mutex);
 while (active_threads < n) {
 active_threads++;
 pthread_start(...);
 }
 pthread_cond_wait(&at_cond, &at_mutex);
 pthread_mutex_unlock(&at_mutex);
}

Condition Variables
  Multiple ‘waiting’ threads: signal wakes up

exactly one, but not specified which one.
  pthread_cond_wait atomically unlocks mutex.
  When handling signal, pthread_cond_wait

atomically re-acquires mutex.
  Avoids race conditions: a signal cannot be

sent between the time a thread unlocks a
mutex and begins to wait for a signal.

Error Handling
  In general, systems calls return a negative

number to indicate an error:
  we often want to find out what error
  servers generally add this information to a log
  clients generally provide some information to the

user

2/9/09

8

extern int errno;
  Whenever an error occurs, system calls set

the value of the global variable errno.
  you can check errno for specific errors
  you can use support functions to print out or log

an ASCII text error message

errno
  errno is valid only after a system call has

returned an error.
  system calls don't clear errno on success
  if you make another system call you may lose the

previous value of errno
  printf makes a call to write!

Error Codes
#include <errno.h>

  Error codes are defined in errno.h

EAGAIN EBADF EACCESS
EBUSY EINTR EINVAL
…

2/9/09

9

Support Routines
In stdio.h:
void perror(const char *string);

In string.h:
char *strerror(int errnum);

Using Wrappers
int Socket(int f,int t,int p) {

 int n;
 if ((n=socket(f,t,p)) < 0)) {
 perror("Fatal Error");
 exit(1);

 }
 return(n);

}

Fatal Errors
  How do you know what should be a fatal

error (program exits)?
  common sense.
  if the program can continue – it should.
  example – if a server can't create a socket, or

can't bind to it's port - there is no sense in
continuing…

2/9/09

10

Server Models
  Iterative servers: process one request at a time.
  Concurrent server: process multiple requests

simultaneously.
  Concurrent: better use of resources (service

others while waiting) and incoming requests can
start being processed immediately after
reception.

  Basic server types:
  Iterative connectionless.
  Iterative connection-oriented.
  Concurrent connectionless.
  Concurrent connection-oriented.

Iterative Server
int fd, newfd;
while (1) {
 newfd = accept(fd, ...);
 handle_request(newfd);
 close(newfd);
}
  simple
  potentially low resource utilization
  potentially long waiting queue (response times

high, rejected requests)

Concurrent Connection-Oriented
1.  Master: create a socket, bind it to a well-known

address.
2.  Master: Place the socket in passive mode.
3.  Master: Repeatedly call accept to receive next

request from a client, create a new slave
process/thread to handle the response.

4.  Slave: Begin with a connection passed from
the master.

5.  Interact with client using this connection (read
request, send response).

6.  Close the connection and exit.

2/9/09

11

One Thread Per Client
void sig_chld(int) {
 while (waitpid(0, NULL, WNOHANG) > 0) {}
 signal(SIGCHLD, sig_chld);
}

int main() {
 int fd, newfd, pid;
 signal(SIGCHLD, sig_chld);
 while (1) {
 newfd = accept(fd, ...);
 if (newfd < 0) continue;
 pid = fork();
 if (pid == 0) { handle_request(newfd); exit(0); }
 else {close(newfd); }
 }
}

Process Pool
#define NB_PROC 10
void recv_requests(int fd) {
 int f;
 while (1) {
 f = accept(fd, ...);
 handle_request(f);
 close(f);
 }
}

int main() {
 int fd;
 for (int i=0; i<NB_PROC; i++) {
 if (fork() == 0) recv_requests(fd);
 }
 while (1) pause();
}

select() Approach
  Single process manages multiple

connections.
  Request treatment needs to be split into non-

blocking stages.
  Data structure required to maintain state of

each concurrent request.

2/9/09

12

select() Approach
1.  Create a socket, bind to well-known port,

add socket to list of those with possible I/O.
2.  Use select() to wait for I/O on socket(s).
3.  If ‘listening’ socket is ready, use accept to

obtain a new connection and add new
socket to list of those with possible I/O.

4.  If some other socket is ready, receive
request, form a response, send back.

5.  Continue with step 2.

select()
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set

*exceptfds, struct timeval *timeout);

  nfds: highest number assigned to a descriptor.
  block until >=1 file descriptors have something to be read,

written, or timeout.
  set bit mask for descriptors to watch using FD_SET.
  returns with bits for ready descriptor set: check with

FD_ISSET.
  cannot specify amount of data ready.

fd_set
  void FD_ZERO(fd_set *fdset);
  void FD_SET(int fd, fd_set *fdset);
  void FD_CLR(int fd, fd_set *fdset);
  int FD_ISSET(int fd, fd_set *fdset);

  Create fd_set.
  Clear it with FD_ZERO.
  Add descriptors to watch with FD_SET.
  Call select.
  When select returns: use FD_ISSET to see if I/O is

possible on each descriptor.

2/9/09

13

Example (simplified)
int main(int argc, char *argv[]) {
 /* variables */
 s = socket(...) /* create socket */
 sin.sin_family = AF_INET;
 sin.sin_port = htons(atoi(argv[1]));
 sin.sin_addr.s_addr = INADDR_ANY;
 bind (s, ...);
 listen(s,5);
 tv.tv_sec = 10;
 tv.tv_usec = 0;
 FD_ZERO(&rfds);
 if (s > 0) FD_SET(s, &rfds);

Example (contd)
 while (1) {
 n = select(FD_SETSIZE, &rfds, NULL, NULL, &tv);
 if (n == 0) printf(“Timeout!\n”);
 else if (n > 0) {
 if (FD_ISSET(s, &rfds)) {
 t = 0;
 while (t = accept(...) > 0) {
 FD_SET(t, &rfds);
 }
 }

Example (contd)
for (i = ...) {
 if (FD_ISSET(i, &rfds)) {

 handle_request(i);
 }
 }
 ...

  handle_request: reads request, sends response,
closes socket if client done, calls FD_CLR

