
2/9/09

1

More Client/Server
Programming

Thread Programming
  fork() is expensive (time, memory)
  Interprocess communication is hard.
  Threads are ‘lightweight’ processes:

  one process can contain several threads of execution.
  all threads execute the same program (different stages).
  all threads share instructions, global memory, open files,

and signal handlers.
  each thread has own thread ID, stack, program counter

and stack pointer, errno, signal mask.
  threads can communicate with shared memory.
  threads have special synchronization mechanisms.

Thread Programming
  POSIX threads (pthreads): standard for Unix
  OS must support it (Linux)
  Programs must be linked with -lpthread

2/9/09

2

Pthreads
  Creating a thread:

#include <pthread.h>
int pthread_create(pthread_t *tid, pthread_attr_t

*attr, void *(*start_routine)(void *), void *arg);
  tid: thread id
  attr: options
  start_routine: function to be executed
  arg: parameter to thread

Pthreads
  Stopping a pthread: a thread stops when

  the process stops,
  the parent thread stops,
  its start_routine function return,
  or it calls pthread_exit:
#include <pthread.h>
void pthread_exit(void *retval);

Pthreads
  Threads must be waited for:

#include <pthread.h>
int pthread_join(pthread_t tid, void **status);

2/9/09

3

Pthreads Example
#include <pthread.h>

void *func(void *param) {
 int *p = (int *) param;
 printf(“This is a new thread (%d)\n”, *p);
 return NULL;
}
int main () {
 pthread_t id;
 int x = 100;

 pthread_create(&id, NULL, func, (void *) &x);
 pthread_join(id, NULL);
}

Pthreads
  A thread can be joinable or detached.
  Detached: on termination all thread

resources are released, does not stop when
parent thread stops, does not need to be
pthread_join()ed.

  Default: joinable (attached), on termination
thread ID and exit status are saved by OS.

Pthreads
  Creating a detached thread:

pthread_t id;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_DETACHED);
pthread_create(&id, &attr, func, NULL);

  pthread_detach()

2/9/09

4

Pthreads
  A thread can join another:

int pthread_join (pthread_t tid, void ** status);
  Call waits until specified thread exits.

Pthreads
int counter = 0;
void *thread_code (void *arg) {
 counter++;
 printf(“Thread %u is number %d\n”,
 pthread_self(), counter);
}
main () {
 int i; pthread_t tid;
 for (i = 0; i < 10; i++)
 pthread_create(&tid, NULL, thread_code, NULL);
}

Pthread
  Mutual exclusion:

pthread_mutex_t counter_mtx =
 PTHREAD_MUTEX_INITIALIZER;

  Locking (blocking call):
pthread_mutex_lock(pthread_mutex_t *mutex);

  Unlocking:
pthread_mutex_unlock(pthread_mutex_t *mutex);

2/9/09

5

Thread Pool
  A server creates a thread for each client. No

more than n threads can be active (or n
clients can be serviced). How can we let the
main thread know that a thread terminated
and that it can service a new client?

Possible Solutions
  pthread_join?

  kinda like wait().
  requires thread id, so we can wait for thread xy, but not for the

‘next’ thread

  Global variables?
  thread startup:

  acquire lock on the variable
  increment variable
  release lock

  thread termination:
  acquire lock on the variable
  decrement variable
  release lock

Main Loop?
active_threads = 0;
// start up first n threads for first n clients
// make sure they are running
while (1) {
 // have to lock/release active_threads;
 if (active_threads < n)
 // start up thread for next client
 busy_waiting(is_bad);
}

2/9/09

6

Condition Variables
  Allow one thread to wait/sleep for event generated by

another thread.
  Allows us to avoid busy waiting.

pthread_cond_t foo =
 PTHREAD_COND_INITIALIZER;

  Condition variable is ALWAYS used with a mutex.

pthread_cond_wait(pthread_cond_t *cptr,
 pthread_mutex_t *mptr);

pthread_cond_signal(pthread_cond_t *cptr);

Condition Variables
  Each thread decrements active_threads when

terminating and calls pthread_cond_signal() to
wake up main loop.

  The main thread increments active_threads
when a thread is started and waits for changes
by calling pthread_cond_wait.

  All changes to active_threads must be ‘within’ a
mutex.

  If two threads exit ‘simultaneously’, the second
one must wait until the first one is recognized by
the main loop.

  Condition signals are NOT lost.

Condition Variables
int active_threads = 0;
pthread_mutex_t at_mutex;
pthread_cond_t at_cond;

void *handler_fct(void *arg) {
 // handle client
 pthread_mutex_lock(&at_mutex);
 active_threads--;
 pthread_cond_signal(&at_cond);
 pthread_mutex_unlock(&at_mutex);
 return();
}

2/9/09

7

Condition Variables
active_threads = 0;
while (1) {
 pthread_mutex_lock(&at_mutex);
 while (active_threads < n) {
 active_threads++;
 pthread_start(...);
 }
 pthread_cond_wait(&at_cond, &at_mutex);
 pthread_mutex_unlock(&at_mutex);
}

Condition Variables
  Multiple ‘waiting’ threads: signal wakes up

exactly one, but not specified which one.
  pthread_cond_wait atomically unlocks mutex.
  When handling signal, pthread_cond_wait

atomically re-acquires mutex.
  Avoids race conditions: a signal cannot be

sent between the time a thread unlocks a
mutex and begins to wait for a signal.

Error Handling
  In general, systems calls return a negative

number to indicate an error:
  we often want to find out what error
  servers generally add this information to a log
  clients generally provide some information to the

user

2/9/09

8

extern int errno;
  Whenever an error occurs, system calls set

the value of the global variable errno.
  you can check errno for specific errors
  you can use support functions to print out or log

an ASCII text error message

errno
  errno is valid only after a system call has

returned an error.
  system calls don't clear errno on success
  if you make another system call you may lose the

previous value of errno
  printf makes a call to write!

Error Codes
#include <errno.h>

  Error codes are defined in errno.h

EAGAIN EBADF EACCESS
EBUSY EINTR EINVAL
…

2/9/09

9

Support Routines
In stdio.h:
void perror(const char *string);

In string.h:
char *strerror(int errnum);

Using Wrappers
int Socket(int f,int t,int p) {

 int n;
 if ((n=socket(f,t,p)) < 0)) {
 perror("Fatal Error");
 exit(1);

 }
 return(n);

}

Fatal Errors
  How do you know what should be a fatal

error (program exits)?
  common sense.
  if the program can continue – it should.
  example – if a server can't create a socket, or

can't bind to it's port - there is no sense in
continuing…

2/9/09

10

Server Models
  Iterative servers: process one request at a time.
  Concurrent server: process multiple requests

simultaneously.
  Concurrent: better use of resources (service

others while waiting) and incoming requests can
start being processed immediately after
reception.

  Basic server types:
  Iterative connectionless.
  Iterative connection-oriented.
  Concurrent connectionless.
  Concurrent connection-oriented.

Iterative Server
int fd, newfd;
while (1) {
 newfd = accept(fd, ...);
 handle_request(newfd);
 close(newfd);
}
  simple
  potentially low resource utilization
  potentially long waiting queue (response times

high, rejected requests)

Concurrent Connection-Oriented
1.  Master: create a socket, bind it to a well-known

address.
2.  Master: Place the socket in passive mode.
3.  Master: Repeatedly call accept to receive next

request from a client, create a new slave
process/thread to handle the response.

4.  Slave: Begin with a connection passed from
the master.

5.  Interact with client using this connection (read
request, send response).

6.  Close the connection and exit.

2/9/09

11

One Thread Per Client
void sig_chld(int) {
 while (waitpid(0, NULL, WNOHANG) > 0) {}
 signal(SIGCHLD, sig_chld);
}

int main() {
 int fd, newfd, pid;
 signal(SIGCHLD, sig_chld);
 while (1) {
 newfd = accept(fd, ...);
 if (newfd < 0) continue;
 pid = fork();
 if (pid == 0) { handle_request(newfd); exit(0); }
 else {close(newfd); }
 }
}

Process Pool
#define NB_PROC 10
void recv_requests(int fd) {
 int f;
 while (1) {
 f = accept(fd, ...);
 handle_request(f);
 close(f);
 }
}

int main() {
 int fd;
 for (int i=0; i<NB_PROC; i++) {
 if (fork() == 0) recv_requests(fd);
 }
 while (1) pause();
}

select() Approach
  Single process manages multiple

connections.
  Request treatment needs to be split into non-

blocking stages.
  Data structure required to maintain state of

each concurrent request.

2/9/09

12

select() Approach
1.  Create a socket, bind to well-known port,

add socket to list of those with possible I/O.
2.  Use select() to wait for I/O on socket(s).
3.  If ‘listening’ socket is ready, use accept to

obtain a new connection and add new
socket to list of those with possible I/O.

4.  If some other socket is ready, receive
request, form a response, send back.

5.  Continue with step 2.

select()
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set

*exceptfds, struct timeval *timeout);

  nfds: highest number assigned to a descriptor.
  block until >=1 file descriptors have something to be read,

written, or timeout.
  set bit mask for descriptors to watch using FD_SET.
  returns with bits for ready descriptor set: check with

FD_ISSET.
  cannot specify amount of data ready.

fd_set
  void FD_ZERO(fd_set *fdset);
  void FD_SET(int fd, fd_set *fdset);
  void FD_CLR(int fd, fd_set *fdset);
  int FD_ISSET(int fd, fd_set *fdset);

  Create fd_set.
  Clear it with FD_ZERO.
  Add descriptors to watch with FD_SET.
  Call select.
  When select returns: use FD_ISSET to see if I/O is

possible on each descriptor.

2/9/09

13

Example (simplified)
int main(int argc, char *argv[]) {
 /* variables */
 s = socket(...) /* create socket */
 sin.sin_family = AF_INET;
 sin.sin_port = htons(atoi(argv[1]));
 sin.sin_addr.s_addr = INADDR_ANY;
 bind (s, ...);
 listen(s,5);
 tv.tv_sec = 10;
 tv.tv_usec = 0;
 FD_ZERO(&rfds);
 if (s > 0) FD_SET(s, &rfds);

Example (contd)
 while (1) {
 n = select(FD_SETSIZE, &rfds, NULL, NULL, &tv);
 if (n == 0) printf(“Timeout!\n”);
 else if (n > 0) {
 if (FD_ISSET(s, &rfds)) {
 t = 0;
 while (t = accept(...) > 0) {
 FD_SET(t, &rfds);
 }
 }

Example (contd)
for (i = ...) {
 if (FD_ISSET(i, &rfds)) {

 handle_request(i);
 }
 }
 ...

  handle_request: reads request, sends response,
closes socket if client done, calls FD_CLR

