CSE 30341
Operating System Principles

File System Interface

Objectives

* To describe the details of implementing local
file systems and directory structures

* To describe the implementation of remote file
systems

* To discuss block allocation and free-block
algorithms and trade-offs

CSE 30341 — Operating System Principles 2

3/23/16

File-System Structure

* File structure
— Logical storage unit
— Collection of related information
* File system resides on secondary storage (disks)

— Provided user interface to storage, mapping logical to
physical

— Provides efficient and convenient access to disk by
allowing data to be stored, located retrieved easily

* File control block (FCB) — storage structure
consisting of information about a file (“i-node”)

* File system organized into layers

CSE 30341 — Operating System Principles 3

Layered File System

application programs

logical file system

J

file-organization module

J

basic file system

J

1/0O control

J

devices

CSE 30341 — Operating System Principles 4

3/23/16

File System Layers

* Device drivers manage |I/O devices at the I/O

control layer
— Given commands like “read drive 1, cylinder 72,

track 2, sector 10, into memory location 1060”
outputs low-level hardware specific commands to

hardware controller

CSE 30341 — Operating System Principles

File System Layers

* Basic file system given command like
“retrieve block 123” translates to device

driver

» Also manages memory buffers and caches (allocation,
freeing, replacement)
— Buffers hold data in transit
— Caches hold frequently used data

CSE 30341 — Operating System Principles

3/23/16

* File organization module understands files,
logical address, and physical blocks
Translates logical block # to physical block #

File System Layers

Manages free space, disk allocation
Sits above the file system
“Understands” both sides

CSE 30341 — Operating System Principles

File System Layers (Cont.)

Logical file system manages metadata information
Translates file name into file number, file handle, location

* File control blocks

Directory management

Protection

Layering useful for reducing complexity and
redundancy, but adds overhead and can decrease

performance

Logical layers can be implemented by any coding method

according to OS designer

CSE 30341 — Operating System Principles

3/23/16

File System Layers (Cont.)

« Many file systems, sometimes many within an
operating system
« Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as floppy,

CD, DVD Blu-ray, Linux has more than 40 types, with
extended file system such as ext2/ext3/ext4 leading; plus
distributed file systems, etc.)

* New ones still arriving — ZFS, GoogleFS, Oracle ASM, FUSE

CSE 30341 — Operating System Principles

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

CSE 30341 — Operating System Principles

10

3/23/16

In-Memory File System Structures

directory structure
open (file name)
directory structure Te-eemiie laak
user space kernel memory secondary storage
@)
AN (1]
| []
F data blocks
read (index) \\D
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage
(b) 11

Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-
oriented way of implementing file systems
VFS allows the same system call interface (the API) to
be used for different types of file systems
— Separates file-system generic operations from
implementation details

— Implementation can be one of many file systems types, or
network file system
* Implements vnodes which hold inodes or network file details

— Then dispatches operation to appropriate file system
implementation routines

The APl is to the VFS interface, rather than any specific
type of file system

CSE 30341 — Operating System Principles 12

3/23/16

Schematic View of Virtual File System

file-system interface

VFS interface

local file system local file system remote file system
type 1 type 2 type 1
network
CSE 30341 — Operating System Principles 13

Virtual File System Implementation

* For example, Linux has four object types:
— i-node, file, superblock, dentry

* VFS defines set of operations on the objects
that must be implemented

— Every object has a pointer to a function table

* Function table has addresses of routines to implement
that function on that object

CSE 30341 — Operating System Principles 14

3/23/16

Directory Implementation

* Linear list of file names with pointer to the data blocks
— Simple to program
— Time-consuming to execute

* Linear search time
* Could keep ordered alphabetically via linked list or use B+ tree

* Hash Table —linear list with hash data structure
— Decreases directory search time

— Collisions — situations where two file names hash to the
same location

— Fixed size entries or use chained-overflow method

CSE 30341 — Operating System Principles 15

Allocation Methods - Contiguous

* An allocation method refers to how disk blocks
are allocated for files:

* Contiguous allocation — each file occupies set of
contiguous blocks
— Best performance in most cases

— Simple — only starting location (block #) and length
(number of blocks) are required

— Problems include finding space for file, knowing file
size, external fragmentation, need for compaction off-
line (downtime) or on-line

CSE 30341 — Operating System Principles 16

3/23/16

Contiguous Allocation

/—\\ directory
m// fle start length
o] 1 21 3] count 0O 2

i tr 14 3
401 s[1 601 7L mail 19 6
8] o[11011 list 28 4
tr f 6 2
12[J13[J14[J15[]
16[J17]18[J19[]
mail
20[]21[J22[]23[]
24[]25[J26[127[]
list
28[]29[130[131[]
CSE 30341 - Operating System Principles 17

Contiguous Allocation

* Mapping from logical to physical

Q
~

LA/512

AN
R

CSE 30341 — Operating System Principles 18

3/23/16

Extent-Based Systems

* Many newer file systems (i.e., Veritas File
System) use a modified contiguous allocation
scheme

* Extent-based file systems allocate disk blocks in
extents

* An extent is a contiguous group of blocks
— Extents are allocated for file allocation
— A file consists of one or more extents

CSE 30341 — Operating System Principles

19

Allocation Methods - Linked

* Linked allocation — each file a linked list of blocks

— File ends at nil pointer
— No external fragmentation
— Each block contains pointer to next block

— Free space management system called when new
block needed

— Improve efficiency by clustering blocks
— Reliability can be a problem
— Locating a block can take many I/Os and disk seeks

CSE 30341 — Operating System Principles

20

3/23/16

10

Linked Allocation

block =

pointer

* Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk

CSE 30341 — Operating System Principles 21

Linked Allocation

4[] 51 81 71

directory I

file
jeep

start end
9 25

8[]
12[J13[J14[J15[]
(171819

[fl1o[2111]

16

20[]21 2 [123[]
24[]25[126[]27[]

28[J29[130[131[]

CSE 30341 — Operating System Principles 22

3/23/16

11

3/23/16

Linked Allocation

* Mapping (Pointer size = 4 bytes)

/Q
LA/508

R

Block to be accessed is the Qth block in the linked chain of blocks
representing the file.
Displacement into block = R + 4 (if pointer at beginning of block)

CSE 30341 — Operating System Principles 23

File-Allocation Table

s directory entry —
[test [Iheeei] 217
name start block .
217 618
339
618 339 [¢
no. of disk blocks -1

FAT

CSE 30341 — Operating System Principles 24

12

Allocation Methods - Indexed

* Indexed allocation

— Each file has its own index block(s) of pointers to
its data blocks

* Logical view — U

index table

CSE 30341 — Operating System Principles 25

Example of Indexed Allocation

//—\ directory

w file index block
o] 1[\25 3] eep L
4[] 5[] 70 l

20 21 J22[A23[]
242526 J27[]
28[_J29[130[131[]

-~ ”

3/23/16

13

Indexed Allocation (Cont.)

* Need index table

* Access: index block + data block

* Reliability?

* No external fragmentation

» “Waste” of space? (at least 1 block per file)

* Maximum file size?
— block size of 512 bytes
— each pointer =1 byte
— size = 256KB
— larger files: linked list or hierarchical index tables

CSE 30341 — Operating System Principles 27

Indexed Allocation

* Mapping from logical to physical in a file of unbounded length
(block size of 512 bytes; pointer size = 1 byte)

Q, = block of index table

R, is used as follows: Q
! LA/(512x511)<
R

1

Q, = displacement into block of index table
R, displacement into block of file:

Q,
R, /512<
R

2

CSE 30341 — Operating System Principles 28

3/23/16

14

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

mode
owners (2)
timestamps (3)
size block count
direct blocks 7 .
.
— [f——ldata] =
single indirect ——-E 3
= d t > ©
double indirect J—: [&—»[data |
triple indirect |—' > —>] data
i 29

Free-Space Management

* File system maintains free-space list to track
available blocks/clusters
— (Using term “block” for simplicity)

 Bit vector or bit map (n blocks)

Block number calculation
01 2 n-1
l ‘ (number of bits per word) *

(number of 0-value words) +
offset of first 1 bit

bit[i] = { 1 = blockd] free CPUs have instructions to

0 => block[i] occupied return offset within
word of first “1” bit

CSE 30341 — Operating System Principles 30

3/23/16

15

Free-Space Management (Cont.)

* Bit map requires extra space

— Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 hits (or 256 MB)

if clusters of 4 blocks
* Easy to get contiguous files
* Linked list (free list)

-> 64MB of memory

— Cannot get contiguous space easily

— No waste of space

— No need to traverse the entire list (if # free blocks

recorded)

CSE 30341 — Operating System Principles

31

Linked Free Space List on Disk

free-space list head ——

20[]21[]22F 123[]

28[]29[J30[J31[]

« Linked list (free list)

space easily
- No waste of space

recorded)

N0

ng System Principles

- Cannot get contiguous

+ No need to traverse the
entire list (if # free blocks

32

3/23/16

16

Free-Space Management (Cont.)

* Grouping
— Modify linked list to store address of next n-1 free

blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

* Counting

— Because space is frequently contiguously used and
freed, with contiguous-allocation allocation, extents,
or clustering

* Keep address of first free block and count of following free
blocks

* Free space list then has entries containing addresses and
counts

CSE 30341 — Operating System Principles 33

The Sun Network File System (NFS)

* An implementation and a specification of a
software system for accessing remote files
across LANs (or WANSs)

* The implementation is part of the Solaris and
SunOS operating systems running on Sun
workstations using an unreliable datagram
protocol (UDP/IP protocol) and Ethernet

CSE 30341 — Operating System Principles 34

3/23/16

17

NFS (Cont.)

Interconnected workstations viewed as a set of

independent machines with independent file systems,

which allows sharing among these file systemsin a

transparent manner

— A remote directory is mounted over a local file system
directory

* The mounted directory looks like an integral subtree of the local
file system

* Specification of the remote directory for the mount operation is
nontygnjparent; the host name of the remote directory has to be
provide

* Files in the remote directory can then be accessed in a transparent
manner
— Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

CSE 30341 — Operating System Principles 35

NFS (Cont.)

NFS is designed to operate in a heterogeneous
environment of different machines, operating systems, and
network architectures; the NFS specifications independent
of these media

This independence is achieved through the use of RPC
primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-
independent interfaces

The NFS specification distinguishes between the services
provided by a mount mechanism and the actual remote-
file-access services

CSE 30341 — Operating System Principles 36

3/23/16

18

Three Independent File Systems

U S1: S2
usr usr usr
local shared dir2
dir1
AR
y— N
p—
CSE 30341 — Operating System Principles 37

Mounting in NFS

u: U:
usr usr

local local

dirt dirt
g
==\
Pa=s ===

(a) (b)
Mounts Cascading mounts

CSE 30341 — Operating System Principles 38

3/23/16

19

NFS Mount Protocol

* Establishesinitial logical connection between server and client
* Mount operation includes name of remote directory to be mounted
and name of server machine storing it

— Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

— Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to mount
them

* Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

* File handle — a file-system identifier, and an inode number to
identify the mounted directory within the exported file system

* The mount operation changes only the user’s view and does not
affect the server side

CSE 30341 — Operating System Principles 39

NFS Protocol

* Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

— searching for a file within a directory
— reading a set of directory entries
— manipulating links and directories
— accessing file attributes
— reading and writing files
* NFS servers are stateless; each request has to provide a full set of
arguments (NFS V4 is just coming available — very different,
stateful)
* Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

* The NFS protocol does not provide concurrency-control
mechanisms

CSE 30341 — Operating System Principles 40

3/23/16

20

Three Major Layers of NFS Architecture

* UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors)

* Virtual File System (VFS) layer — distinguishes local files
from remote ones, and local files are further
distinguished according to their file-system types

— The VFS activates file-system-specific operations to handle
local requests according to their file-system types

— Calls the NFS protocol procedures for remote requests

* NFS service layer — bottom layer of the architecture
— Implements the NFS protocol

CSE 30341 — Operating System Principles 41

Schematic View of NFS Architecture

| client server

system-calls interface

VFS interface ﬁ VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR

’ network |

42

3/23/16

21

NFS Path-Name Translation

* Performed by breaking the path into
component names and performing a separate
NFS lookup call for every pair of component
name and directory vnode

* To make lookup faster, a directory name
lookup cache on the client’s side holds the
vnodes for remote directory names

CSE 30341 — Operating System Principles 43

NFS Remote Operations

* Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

* NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

* File-blocks cache — when a file is opened, the kernel checks with the
remote server whether to fetch or revalidate the cached attributes

— Cached file blocks are used only if the corresponding cached attributes
are up to date

* File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

* Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

CSE 30341 — Operating System Principles 44

3/23/16

22

