
3/23/16	

1	

CSE	30341	
Opera,ng	System	Principles	

	

	
File	System	Interface	

CSE	30341	–	Opera,ng	System	Principles	 2	

Objec,ves	

•  To	describe	the	details	of	implemen8ng	local	
file	systems	and	directory	structures	

•  To	describe	the	implementa8on	of	remote	file	
systems	

•  To	discuss	block	alloca8on	and	free-block	
algorithms	and	trade-offs	

3/23/16	

2	

CSE	30341	–	Opera,ng	System	Principles	 3	

File-System	Structure	
•  File	structure	
–  Logical	storage	unit	
–  Collec,on	of	related	informa,on	

•  File	system	resides	on	secondary	storage	(disks)	
–  Provided	user	interface	to	storage,	mapping	logical	to	
physical	

–  Provides	efficient	and	convenient	access	to	disk	by	
allowing	data	to	be	stored,	located	retrieved	easily	

•  File	control	block	(FCB)	–	storage	structure	
consis,ng	of	informa,on	about	a	file	(“i-node”)	

•  File	system	organized	into	layers	

CSE	30341	–	Opera,ng	System	Principles	 4	

Layered	File	System	

3/23/16	

3	

CSE	30341	–	Opera,ng	System	Principles	 5	

File	System	Layers	

•  Device	drivers	manage	I/O	devices	at	the	I/O	
control	layer	
– Given	commands	like	“read	drive	1,	cylinder	72,	
track	2,	sector	10,	into	memory	loca,on	1060”	
outputs	low-level	hardware	specific	commands	to	
hardware	controller	

CSE	30341	–	Opera,ng	System	Principles	 6	

File	System	Layers	

•  Basic	file	system	given	command	like	
“retrieve	block	123”	translates	to	device	
driver	
•  Also	manages	memory	buffers	and	caches	(alloca,on,	

freeing,	replacement)		
–  Buffers	hold	data	in	transit	
–  Caches	hold	frequently	used	data	

3/23/16	

4	

CSE	30341	–	Opera,ng	System	Principles	 7	

File	System	Layers	

•  File	organiza8on	module	understands	files,	
logical	address,	and	physical	blocks	
•  Translates	logical	block	#	to	physical	block	#	
•  Manages	free	space,	disk	alloca,on	
•  Sits	above	the	file	system	
•  “Understands”	both	sides	

CSE	30341	–	Opera,ng	System	Principles	 8	

File	System	Layers	(Cont.)	

•  Logical	file	system	manages	metadata	informa,on	
•  Translates	file	name	into	file	number,	file	handle,	loca,on	

•  File	control	blocks	

•  Directory	management	
•  Protec,on	

•  Layering	useful	for	reducing	complexity	and	
redundancy,	but	adds	overhead	and	can	decrease	
performance	
•  Logical	layers	can	be	implemented	by	any	coding	method	

according	to	OS	designer	

3/23/16	

5	

CSE	30341	–	Opera,ng	System	Principles	 9	

File	System	Layers	(Cont.)	

•  Many	file	systems,	some,mes	many	within	an	
opera,ng	system	
•  Each	with	its	own	format	(CD-ROM	is	ISO	9660;	Unix	has	

UFS,	FFS;		Windows	has	FAT,	FAT32,	NTFS	as	well	as	floppy,	
CD,	DVD	Blu-ray,	Linux	has	more	than	40	types,	with	
extended	file	system	such	as	ext2/ext3/ext4	leading;	plus	
distributed	file	systems,	etc.)	

•  New	ones	s,ll	arriving	–	ZFS,	GoogleFS,	Oracle	ASM,	FUSE	

CSE	30341	–	Opera,ng	System	Principles	 10	

A	Typical	File	Control	Block	

3/23/16	

6	

CSE	30341	–	Opera,ng	System	Principles	 11	

In-Memory	File	System	Structures	

CSE	30341	–	Opera,ng	System	Principles	 12	

Virtual	File	Systems	
•  Virtual	File	Systems	(VFS)	on	Unix	provide	an	object-
oriented	way	of	implemen,ng	file	systems	

•  VFS	allows	the	same	system	call	interface	(the	API)	to	
be	used	for	different	types	of	file	systems	
–  Separates	file-system	generic	opera,ons	from	
implementa,on	details	

–  Implementa,on	can	be	one	of	many	file	systems	types,	or	
network	file	system	
•  Implements	vnodes	which	hold	inodes	or	network	file	details	

–  Then	dispatches	opera,on	to	appropriate	file	system	
implementa,on	rou,nes	

•  The	API	is	to	the	VFS	interface,	rather	than	any	specific	
type	of	file	system	

3/23/16	

7	

CSE	30341	–	Opera,ng	System	Principles	 13	

Schema,c	View	of	Virtual	File	System	

CSE	30341	–	Opera,ng	System	Principles	 14	

Virtual	File	System	Implementa,on	

•  For	example,	Linux	has	four	object	types:	
–  i-node,	file,	superblock,	dentry	

•  VFS	defines	set	of	opera,ons	on	the	objects	
that	must	be	implemented	
– Every	object	has	a	pointer	to	a	func,on	table	
•  Func,on	table	has	addresses	of	rou,nes	to	implement	
that	func,on	on	that	object	

3/23/16	

8	

CSE	30341	–	Opera,ng	System	Principles	 15	

Directory	Implementa,on	

•  Linear	list	of	file	names	with	pointer	to	the	data	blocks	
–  Simple	to	program	
–  Time-consuming	to	execute	

•  Linear	search	,me	
•  Could	keep	ordered	alphabe,cally	via	linked	list	or	use	B+	tree	
	

•  Hash	Table	–	linear	list	with	hash	data	structure	
–  Decreases	directory	search	,me	
–  Collisions	–	situa,ons	where	two	file	names	hash	to	the	
same	loca,on	

–  Fixed	size	entries	or	use	chained-overflow	method	

CSE	30341	–	Opera,ng	System	Principles	 16	

Alloca,on	Methods	-	Con,guous	
•  An	alloca,on	method	refers	to	how	disk	blocks	
are	allocated	for	files:	

•  Con8guous	alloca8on	–	each	file	occupies	set	of	
con,guous	blocks	
–  Best	performance	in	most	cases	
–  Simple	–	only	star,ng	loca,on	(block	#)	and	length	
(number	of	blocks)	are	required	

–  Problems	include	finding	space	for	file,	knowing	file	
size,	external	fragmenta,on,	need	for	compac8on	off-
line	(down8me)	or	on-line	

3/23/16	

9	

CSE	30341	–	Opera,ng	System	Principles	 17	

Con,guous	Alloca,on	

CSE	30341	–	Opera,ng	System	Principles	 18	

Con,guous	Alloca,on	

•  Mapping from logical to physical

LA/512

Q

R

3/23/16	

10	

CSE	30341	–	Opera,ng	System	Principles	 19	

Extent-Based	Systems	
•  Many	newer	file	systems	(i.e.,	Veritas	File	
System)	use	a	modified	con,guous	alloca,on	
scheme	

•  Extent-based	file	systems	allocate	disk	blocks	in	
extents	

•  An	extent	is	a	con,guous	group	of	blocks	
–  Extents	are	allocated	for	file	alloca,on	
– A	file	consists	of	one	or	more	extents	

CSE	30341	–	Opera,ng	System	Principles	 20	

Alloca,on	Methods	-	Linked	

•  Linked	alloca8on	–	each	file	a	linked	list	of	blocks	
–  File	ends	at	nil	pointer	
– No	external	fragmenta,on	
–  Each	block	contains	pointer	to	next	block	
–  Free	space	management	system	called	when	new	
block	needed	

–  Improve	efficiency	by	clustering	blocks	
–  Reliability	can	be	a	problem	
–  Loca,ng	a	block	can	take	many	I/Os	and	disk	seeks	

	

3/23/16	

11	

CSE	30341	–	Opera,ng	System	Principles	 21	

Linked	Alloca,on	

•  Each	file	is	a	linked	list	of	disk	blocks:	blocks	
may	be	scalered	anywhere	on	the	disk	

pointerblock =

CSE	30341	–	Opera,ng	System	Principles	 22	

Linked	Alloca,on	

3/23/16	

12	

CSE	30341	–	Opera,ng	System	Principles	 23	

Linked	Alloca,on	

•  Mapping	(Pointer	size	=	4	bytes)	

Block to be accessed is the Qth block in the linked chain of blocks
representing the file.
Displacement into block = R + 4 (if pointer at beginning of block)

LA/508
Q

R

CSE	30341	–	Opera,ng	System	Principles	 24	

File-Alloca,on	Table	

3/23/16	

13	

CSE	30341	–	Opera,ng	System	Principles	 25	

Alloca,on	Methods	-	Indexed	

•  Indexed	alloca8on	
– Each	file	has	its	own	index	block(s)	of	pointers	to	
its	data	blocks	

•  Logical	view	

index table

CSE	30341	–	Opera,ng	System	Principles	 26	

Example	of	Indexed	Alloca,on	

3/23/16	

14	

CSE	30341	–	Opera,ng	System	Principles	 27	

Indexed	Alloca,on	(Cont.)	

•  Need	index	table	
•  Access:	index	block	+	data	block	
•  Reliability?	
•  No	external	fragmenta,on	
•  “Waste”	of	space?	(at	least	1	block	per	file)	
•  Maximum	file	size?	
–  block	size	of	512	bytes	
–  each	pointer	=	1	byte	
–  size	=	256KB	
–  larger	files:	linked	list	or	hierarchical	index	tables	

CSE	30341	–	Opera,ng	System	Principles	 28	

Indexed	Alloca,on	
•  Mapping	from	logical	to	physical	in	a	file	of	unbounded	length	

(block	size	of	512	bytes;	pointer	size	=	1	byte)	

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

3/23/16	

15	

CSE	30341	–	Opera,ng	System	Principles	 29	

Combined	Scheme:		UNIX	UFS		
(4K	bytes	per	block,	32-bit	addresses)	

CSE	30341	–	Opera,ng	System	Principles	 30	

Free-Space	Management	

•  File	system	maintains	free-space	list	to	track	
available	blocks/clusters	
–  (Using	term	“block”	for	simplicity)	

•  Bit	vector	or	bit	map		(n	blocks)	

…
0 1 2 n-1

bit[i] =

!
"
1 ⇒ block[i] free

0 ⇒ block[i] occupied

Block number calculation
(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to
return offset within
word of first “1” bit

3/23/16	

16	

CSE	30341	–	Opera,ng	System	Principles	 31	

Free-Space	Management	(Cont.)	
•  Bit	map	requires	extra	space	
–  Example:	

	 	block	size	=	4KB	=		212	bytes	
	 	disk	size	=	240	bytes	(1	terabyte)	
	 	n	=	240/212	=	228	bits	(or	256	MB)	
	 	if	clusters	of	4	blocks	->	64MB	of	memory	

	

•  Easy	to	get	con,guous	files	
		

•  Linked	list	(free	list)	
–  Cannot	get	con,guous	space	easily	
–  No	waste	of	space	
–  No	need	to	traverse	the	en,re	list	(if	#	free	blocks	
recorded)	

CSE	30341	–	Opera,ng	System	Principles	 32	

Linked	Free	Space	List	on	Disk	

•  Linked list (free list)
•  Cannot get contiguous

space easily
•  No waste of space
•  No need to traverse the

entire list (if # free blocks
recorded)

3/23/16	

17	

CSE	30341	–	Opera,ng	System	Principles	 33	

Free-Space	Management	(Cont.)	
•  Grouping		
– Modify	linked	list	to	store	address	of	next	n-1	free	
blocks	in	first	free	block,	plus	a	pointer	to	next	block	
that	contains	free-block-pointers	(like	this	one)	

•  Coun,ng	
–  Because	space	is	frequently	con,guously	used	and	
freed,		with	con,guous-alloca,on	alloca,on,	extents,	
or	clustering	
•  Keep	address	of	first	free	block	and	count	of	following	free	
blocks	

•  Free	space	list	then	has	entries	containing	addresses	and	
counts	

CSE	30341	–	Opera,ng	System	Principles	 34	

The	Sun	Network	File	System	(NFS)	

•  An	implementa,on	and	a	specifica,on	of	a	
sorware	system	for	accessing	remote	files	
across	LANs	(or	WANs)	
	

•  The	implementa,on	is	part	of	the	Solaris	and	
SunOS	opera,ng	systems	running	on	Sun	
worksta,ons	using	an	unreliable	datagram	
protocol	(UDP/IP	protocol)	and	Ethernet	

3/23/16	

18	

CSE	30341	–	Opera,ng	System	Principles	 35	

NFS	(Cont.)	
•  Interconnected	worksta,ons	viewed	as	a	set	of	
independent	machines	with	independent	file	systems,	
which	allows	sharing	among	these	file	systems	in	a	
transparent	manner	
–  A	remote	directory	is	mounted	over	a	local	file	system	
directory	
•  The	mounted	directory	looks	like	an	integral	subtree	of	the	local	
file	system	

•  Specifica,on	of	the	remote	directory	for	the	mount	opera,on	is	
nontransparent;	the	host	name	of	the	remote	directory	has	to	be	
provided	

•  Files	in	the	remote	directory	can	then	be	accessed	in	a	transparent	
manner	

–  Subject	to	access-rights	accredita,on,	poten,ally	any	file	
system	(or	directory	within	a	file	system),	can	be	mounted	
remotely	on	top	of	any	local	directory	

CSE	30341	–	Opera,ng	System	Principles	 36	

NFS	(Cont.)	
•  NFS	is	designed	to	operate	in	a	heterogeneous	

environment	of	different	machines,	opera,ng	systems,	and	
network	architectures;	the	NFS	specifica,ons	independent	
of	these	media	

	
•  This	independence	is	achieved	through	the	use	of	RPC	

primi,ves	built	on	top	of	an	External	Data	Representa,on	
(XDR)	protocol	used	between	two	implementa,on-
independent	interfaces	
	

•  The	NFS	specifica,on	dis,nguishes	between	the	services	
provided	by	a	mount	mechanism	and	the	actual	remote-
file-access	services		

3/23/16	

19	

CSE	30341	–	Opera,ng	System	Principles	 37	

Three	Independent	File	Systems	

CSE	30341	–	Opera,ng	System	Principles	 38	

Moun,ng	in	NFS		

Mounts Cascading mounts

3/23/16	

20	

CSE	30341	–	Opera,ng	System	Principles	 39	

NFS	Mount	Protocol	
•  Establishes	ini,al	logical	connec,on	between	server	and	client	
•  Mount	opera,on	includes	name	of	remote	directory	to	be	mounted	

and	name	of	server	machine	storing	it	
–  Mount	request	is	mapped	to	corresponding	RPC	and	forwarded	to	

mount	server	running	on	server	machine		
–  Export	list	–	specifies	local	file	systems	that	server	exports	for	

moun,ng,	along	with	names	of	machines	that	are	permiled	to	mount	
them		

•  Following	a	mount	request	that	conforms	to	its	export	list,	the	
server	returns	a	file	handle—a	key	for	further	accesses	

•  File	handle	–	a	file-system	iden,fier,	and	an	inode	number	to	
iden,fy	the	mounted	directory	within	the	exported	file	system	

•  The	mount	opera,on	changes	only	the	user’s	view	and	does	not	
affect	the	server	side		

CSE	30341	–	Opera,ng	System	Principles	 40	

NFS	Protocol	
•  Provides	a	set	of	remote	procedure	calls	for	remote	file	opera,ons.		

The	procedures	support	the	following	opera,ons:	
–  searching	for	a	file	within	a	directory		
–  reading	a	set	of	directory	entries		
–  manipula,ng	links	and	directories		
–  accessing	file	alributes	
–  reading	and	wri,ng	files	

•  NFS	servers	are	stateless;	each	request	has	to	provide	a	full	set	of	
arguments		(NFS	V4	is	just	coming	available	–	very	different,	
stateful)	

•  Modified	data	must	be	commiled	to	the	server’s	disk	before	
results	are	returned	to	the	client	(lose	advantages	of	caching)	

•  The	NFS	protocol	does	not	provide	concurrency-control	
mechanisms	

3/23/16	

21	

CSE	30341	–	Opera,ng	System	Principles	 41	

Three	Major	Layers	of	NFS	Architecture		

•  UNIX	file-system	interface	(based	on	the	open,	read,	
write,	and	close	calls,	and	file	descriptors)	
	

•  Virtual	File	System	(VFS)	layer	–	dis,nguishes	local	files	
from	remote	ones,	and	local	files	are	further	
dis,nguished	according	to	their	file-system	types	
–  The	VFS	ac,vates	file-system-specific	opera,ons	to	handle	
local	requests	according	to	their	file-system	types		

–  Calls	the	NFS	protocol	procedures	for	remote	requests	
	

•  NFS	service	layer	–	bolom	layer	of	the	architecture	
–  Implements	the	NFS	protocol	

CSE	30341	–	Opera,ng	System	Principles	 42	

Schema,c	View	of	NFS	Architecture		

3/23/16	

22	

CSE	30341	–	Opera,ng	System	Principles	 43	

NFS	Path-Name	Transla,on	

•  Performed	by	breaking	the	path	into	
component	names	and	performing	a	separate	
NFS	lookup	call	for	every	pair	of	component	
name	and	directory	vnode	
	

•  To	make	lookup	faster,	a	directory	name	
lookup	cache	on	the	client’s	side	holds	the	
vnodes	for	remote	directory	names	

CSE	30341	–	Opera,ng	System	Principles	 44	

NFS	Remote	Opera,ons	
•  Nearly	one-to-one	correspondence	between	regular	UNIX		system	

calls	and	the	NFS	protocol	RPCs	(except	opening	and	closing	files)	
•  NFS	adheres	to	the	remote-service	paradigm,	but	employs	

buffering	and	caching	techniques	for	the	sake	of	performance		
•  File-blocks	cache	–	when	a	file	is	opened,	the	kernel	checks	with	the	

remote	server	whether	to	fetch	or	revalidate	the	cached	alributes	
–  Cached	file	blocks	are	used	only	if	the	corresponding	cached	alributes	

are	up	to	date	

•  File-alribute	cache	–	the	alribute	cache	is	updated	whenever	new	
alributes	arrive	from	the	server	

•  Clients	do	not	free	delayed-write	blocks	un,l	the	server	confirms	
that	the	data	have	been	wrilen	to	disk	

