
1/25/16	

1	

CSE	30341	
Opera,ng	System	Principles	

	

	
Lecture	5	–	Processes	/	Threads	

CSE	30341	–	Opera,ng	System	Principles	 2	

Recap	

•  Processes	
– What	is	a	process?	
– What	is	in	a	process	control	block?	
–  Contrast	stack,	heap,	data,	text.	
– What	are	process	states?	
– Which	queues	are	used	in	an	OS?	
– What	does	the	scheduler	do?	
– What	is	a	context	switch?	
– What	is	the	producer/consumer	problem?	
– What	is	IPC?	

1/25/16	

2	

CSE	30341	–	Opera,ng	System	Principles	 3	

Lecture	Overview:	Threads	

•  Overview	
•  Mul,core	Programming	
•  Mul,threading	Models	
•  Thread	Libraries	
•  Implicit	Threading	
•  Threading	Issues	
•  Opera,ng	System	Examples	
	

CSE	30341	–	Opera,ng	System	Principles	 4	

Defini,on	

•  Process:	group	resources	together	
•  Thread:	en,ty	scheduled	for	execu,on	in	a	
process	

•  “Single	sequen?al	stream	of	instruc?ons	
within	a	process”	

•  “Lightweight	process”	

1/25/16	

3	

CSE	30341	–	Opera,ng	System	Principles	 5	

Thread	of	Execu,on	

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

CSE	30341	–	Opera,ng	System	Principles	 6	

Thread	vs.	Process	

•  Threads	have	their	own:	
– Thread	ID	(TID)	(compare	to	PID)	
– Program	counter	(PC)	
– Register	set	
– Stack	

•  Threads	commonly	share:	
– Code	sec,on	(text)	
– Data	sec,on	
– Resources	(files,	signals,	etc.)	

1/25/16	

4	

CSE	30341	–	Opera,ng	System	Principles	 7	

Why	Threads?	
•  Enable	mul?-tasking	within	an	app	
–  Update	display	
–  Fetch	data	
–  Spell	checking	
–  Answer	a	network	request	

•  Reduced	cost	(“lightweight”	process)	
–  Processes	are	heavy	to	create	
–  IPC	for	threads	cheaper/easier	than	processes	

•  Can	“simplify”	code	&	increase	efficiency	
•  Kernels	are	generally	mul,threaded	(different	threads	
provide	different	OS	services)	

CSE	30341	–	Opera,ng	System	Principles	 8	

Mul,-Threaded	Server	

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

(thread	pool)	

1/25/16	

5	

CSE	30341	–	Opera,ng	System	Principles	 9	

Benefits	

•  Responsiveness	–	may	allow	con,nued	execu,on	if	part	of	
process	is	blocked,	especially	important	for	user	interfaces	
	

•  Resource	Sharing	–	threads	share	resources	of	process,	
easier	than	shared	memory	or	message	passing	
	

•  Economy	–	cheaper	than	process	crea,on,	thread	
switching	lower	overhead	than	context	switching	
	

•  Scalability	–	process	can	take	advantage	of	mul,processor	
architectures	
	

CSE	30341	–	Opera,ng	System	Principles	 10	

Mul,core	Systems	

1/25/16	

6	

CSE	30341	–	Opera,ng	System	Principles	 11	

Mul,core	Programming	

•  Mul?core	systems	pueng	pressure	on	programmers;	
challenges	include:	
–  Dividing	ac?vi?es	(which	tasks	to	parallelize)	
–  Balance	(if/how	to	parallelize	tasks)	
–  Data	spliNng	(how	to	divide	data)	
–  Data	dependency	(thread	synchroniza,on)	
–  Tes?ng	and	debugging	(how	to	test	different	execu,on	paths)	

•  Parallelism	implies	a	system	can	perform	more	than	one	task	
simultaneously	

•  Concurrency	supports	more	than	one	task	making	progress	
–  Single	processor/core,	scheduler	providing	concurrency	

CSE	30341	–	Opera,ng	System	Principles	 12	

Concurrency	vs.	Parallelism	

■  Concurrent execution on single-core system

■  Parallelism on a multi-core system

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

1/25/16	

7	

CSE	30341	–	Opera,ng	System	Principles	 13	

Mul,core	Programming	

•  Types	of	parallelism		
– Data	parallelism	–	distributes	subsets	of	the	same	
data	across	mul,ple	cores,	same	opera,on	on	
each	

–  Task	parallelism	–	distribu,ng	threads	across	
cores,	each	thread	performing	unique	opera,on	

	
•  As	#	of	threads	grows,	so	does	architectural	
support	for	threading	(“hyperthreading”)	
–  CPUs	have	cores	as	well	as	hardware	threads	
–  Consider	Oracle	SPARC	T4	with	8	cores	and	8	
hardware	threads	per	core	

	

CSE	30341	–	Opera,ng	System	Principles	 14	

Data	vs.	Task	Parallelism	

•  Count	number	of	,mes	each	
character	in	alphabet	occurs	

•  Data	Parallelism	
– Thread	1	does	page	1-100	
– Thread	2	does	page	100-200	

•  Task	Parallelism	
– Thread	1	does	leiers	A-F,	all	pages	
– Thread	2	does	leiers	G-L,	all	pages	

1/25/16	

8	

Single	and	Mul,threaded	Processes	

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

CSE	30341	–	Opera,ng	System	Principles	 16	

User	Threads	and	Kernel	Threads	
•  User	threads	-	management	done	by	user-level	threads	library	
•  Three	primary	thread	libraries:	

–  	POSIX	Pthreads	
–  	Win32	threads	
–  	Java	threads	
	

•  Kernel	threads	-	Supported	by	the	Kernel,	“schedulable	en?ty”	
•  Examples	–	virtually	all	general	purpose	opera,ng	systems,	

including:	
–  Windows		
–  Solaris	
–  Linux	
–  Tru64	UNIX	
–  Mac	OS	X	

1/25/16	

9	

CSE	30341	–	Opera,ng	System	Principles	 17	

Mul,threading	Models	

•  Many-to-One	
	

•  One-to-One	
	

•  Many-to-Many	

CSE	30341	–	Opera,ng	System	Principles	 18	

Many-to-One	
•  Many	user-level	threads	mapped	to	

single	kernel	thread	
•  One	thread	blocking	causes	all	to	

block	
•  Mul,ple	threads	may	not	run	in	

parallel	on	mul,core	system	because	
only	one	may	be	in	kernel	at	a	,me	

•  Few	systems	currently	use	this	model	

•  Examples:	
–  Solaris	Green	Threads	
–  GNU	Portable	Threads	

user thread

kernel threadk

1/25/16	

10	

CSE	30341	–	Opera,ng	System	Principles	 19	

One-to-One	

•  Each	user-level	thread	maps	to	kernel	thread	
•  Crea,ng	a	user-level	thread	creates	a	kernel	thread	
•  More	concurrency	than	many-to-one	
•  Number	of	threads	per	process	some,mes	restricted	
due	to	overhead	

•  Examples	
– Windows	NT/XP/2000	
–  Linux	
–  Solaris	9	and	later	

user thread

kernel threadkkkk

CSE	30341	–	Opera,ng	System	Principles	 20	

Many-to-Many	Model	
•  Allows	many	user	level	

threads	to	be	mapped	to	
many	kernel	threads	

•  Allows	the		opera,ng	system	
to	create	a	sufficient	number	
of	kernel	threads	

•  Solaris	prior	to	version	9	

•  Windows	NT/2000	with	the	
ThreadFiber	package	

user thread

kernel threadkkk

1/25/16	

11	

CSE	30341	–	Opera,ng	System	Principles	 21	

Two-level	Model	

•  Similar	to	M:M,	except	that	it	allows	a	
user	thread	to	be	bound	to	kernel	thread	

•  Examples	
–  IRIX	
– HP-UX	
– Tru64	UNIX	
– Solaris	8	and	earlier	

user thread

kernel threadkkk k

CSE	30341	–	Opera,ng	System	Principles	 22	

Thread	Libraries	

•  Thread	library	provides	programmer	with	
API	for	crea,ng	and	managing	threads	

•  Two	primary	ways	of	implemen,ng	
– Library	en,rely	in	user	space	
– Kernel-level	library	supported	by	the	OS	

1/25/16	

12	

CSE	30341	–	Opera,ng	System	Principles	 23	

Pthreads	

•  May	be	provided	either	as	user-level	or	kernel-level	

•  A	POSIX	standard	(IEEE	1003.1c)	API	for	thread	
crea,on	and	synchroniza,on	

•  Specifica7on,	not	implementa7on	

•  API	specifies	behavior	of	the	thread	library,	
implementa,on	is	up	to	development	of	the	library	

•  Common	in	UNIX	opera,ng	systems	(Solaris,	Linux,	
Mac	OS	X)	

	

CSE	30341	–	Opera,ng	System	Principles	 24	

Pthreads	Example	

1/25/16	

13	

CSE	30341	–	Opera,ng	System	Principles	 25	

Pthreads	Example	(Cont.)	

CSE	30341	–	Opera,ng	System	Principles	 26	

Pthreads	Code	for	Joining	10	Threads	

1/25/16	

14	

CSE	30341	–	Opera,ng	System	Principles	 27	

Implicit	Threading	
•  Growing	in	popularity	as	numbers	of	threads	
increase,	program	correctness	more	difficult	with	
explicit	threads	

•  Crea,on	and	management	of	threads	done	by	
compilers	and	run-,me	libraries	rather	than	
programmers	

•  Examples:	
–  Thread	Pools	
–  OpenMP	
–  Grand	Central	Dispatch	
– Microsoo	Threading	Building	Blocks	(TBB)	

CSE	30341	–	Opera,ng	System	Principles	 28	

Thread	Pools	
•  Create	a	number	of	threads	in	a	pool	where	they	await	work	
•  Advantages:	

–  Usually	slightly	faster	to	service	a	request	with	an	exis,ng	thread	than	create	a	new	
thread	

–  Allows	the	number	of	threads	in	the	applica,on(s)	to	be	bound	to	the	size	of	the	pool	
–  Separa,ng	task	to	be	performed	from	mechanics	of	crea,ng	task	allows	different	

strategies	for	running	task	
•  i.e.,	tasks	could	be	scheduled	to	run	periodically	

•  Windows	API:	
ThreadPool.QueueUserWorkItem(new	WaitCallback(ThreadProc));	
…	
	
sta,c	void	ThreadProc(Object	stateinfo)	{	
…	
}	

1/25/16	

15	

CSE	30341	–	Opera,ng	System	Principles	 29	

OpenMP	
•  Set	of	compiler	direc,ves	and	an	API	

for	C,	C++,	FORTRAN		
•  Provides	support	for	parallel	

programming	in	shared-memory	
environments	

•  Iden,fies	parallel	regions	–	blocks	of	
code	that	can	run	in	parallel	

#pragma omp parallel
Create	as	many	threads	as	there	are	cores	

#pragma omp parallel for
for(i=0;i<N;i++) {

 c[i] = a[i] + b[i];
}
Run	for	loop	in	parallel	

CSE	30341	–	Opera,ng	System	Principles	 30	

Grand	Central	Dispatch	

•  Apple	technology	for	Mac	OS	X	and	iOS	opera,ng	systems	
•  Extensions	to	C,	C++	languages,	API,	and	run-,me	library	
•  Allows	iden,fica,on	of	parallel	sec,ons	
•  Manages	most	of	the	details	of	threading	
•  Block	is	in	“^{	}”	-			ˆ{ printf("I am a block"); } 	
•  Blocks	placed	in	dispatch	queue	

–  Assigned	to	available	thread	in	thread	pool	when	removed	from	queue	
•  Two	types	of	dispatch	queues:	

–  serial	–	blocks	removed	in	FIFO	order,	queue	is	per	process,	called	main	
queue	
•  Programmers	can	create	addi,onal	serial	queues	within	program	

–  concurrent	–	removed	in	FIFO	order	but	several	may	be	removed	at	a	
,me	
•  Three	system	wide	queues	with	priori,es	low,	default,	high	

1/25/16	

16	

CSE	30341	–	Opera,ng	System	Principles	 31	

Threading	Issues:	
Seman,cs	of	fork()	and	exec()	

•  Does	fork()duplicate	only	the	calling	thread	
or	all	threads?	
– When	is	duplica,ng	all	threads	a	really	bad	idea?	
– Some	OSes	have	two	versions	of	fork	
– POSIX:	only	the	calling	thread	

•  Exec()usually	works	as	normal	–	replace	the	
running	process	including	all	threads	

CSE	30341	–	Opera,ng	System	Principles	 32	

Threading	Issues:	
Signal	Handling	

•  Signals	are	used	in	UNIX	systems	to	no,fy	a	process	
that	a	par,cular	event	has	occurred.	

•  A	signal	handler	is	used	to	process	signals	
1.  Signal	is	generated	by	par,cular	event	
2.  Signal	is	delivered	to	a	process	
3.  Signal	is	handled	by	one	of	two	signal	handlers:	

1.  default	
2.  user-defined	

•  Every	signal	has	default	handler	that	kernel	runs	when	
handling	signal	
–  User-defined	signal	handler	can	override	default	
–  For	single-threaded,	signal	delivered	to	process	

1/25/16	

17	

CSE	30341	–	Opera,ng	System	Principles	 33	

Threading	Issues:	
Thread	Cancella,on	

•  Terminating a thread before it has finished
•  Thread to be canceled is target thread
•  Two general approaches:

–  Asynchronous cancellation terminates the target thread
immediately

–  Deferred cancellation allows the target thread to periodically
check if it should be cancelled

•  Pthread code to create and cancel a thread:

CSE	30341	–	Opera,ng	System	Principles	 34	

Thread	Cancella,on	(Cont.)	

•  Invoking	thread	cancella,on	requests	cancella,on,	but	actual	
cancella,on	depends	on	thread	state	
–  pthread_setcancelstate() -> enable/disable
–  Pthread_setcanceltype():	

•  If	thread	has	cancella,on	disabled,	cancella,on	remains	pending	un,l	
thread	enables	it	

•  Default	type	is	deferred	
–  Cancella,on	only	occurs	when	thread	reaches	cancella?on	point	

•  pthread_testcancel()
•  Asynchronous:	terminate	immediately	

1/25/16	

18	

CSE	30341	–	Opera,ng	System	Principles	 35	

Thread-Local	Storage	

•  Thread-local	storage	(TLS)	allows	each	thread	to	have	
its	own	copy	of	data	

•  Useful	when	you	do	not	have	control	over	the	thread	
crea,on	process	(i.e.,	when	using	a	thread	pool)	

•  Different	from	local	variables	
–  Local	variables	visible	only	during	single	func,on	invoca,on	
–  TLS	visible	across	func,on	invoca,ons	

•  Similar	to	static	data	
–  TLS	is	unique	to	each	thread	

CSE	30341	–	Opera,ng	System	Principles	 36	

Linux	Threads	

■  Linux	refers	to	them	as	tasks	rather	than	threads	
	
■  Thread	crea,on	is	done	through	clone() system	call	
	
■  clone() allows	a	child	task	to	share	the	address	space	of	the	

parent	task	(process)	
●  Flags	control	behavior	

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

1/25/16	

19	

CSE	30341	–	Opera,ng	System	Principles	 37	

Recap	

•  What	is	a	thread?	Why	would	one	use	a	
thread?	

•  How	does	a	thread	differ	from	a	process?	
•  What	are	pthreads?	
•  What	is	a	kernel	thread?	
•  How	does	task	parallelism	differ	from	data	
parallelism?	

