1/25/16

CSE 30341
Operating System Principles

Lecture 5 — Processes / Threads

Recap

* Processes
— What is a process?
— What is in a process control block?
— Contrast stack, heap, data, text.
— What are process states?
— Which queues are used in an OS?
— What does the scheduler do?
— What is a context switch?
— What is the producer/consumer problem?
— Whatis IPC?

CSE 30341 — Operating System Principles 2

1/25/16

Lecture Overview: Threads

e Qverview

Multicore Programming
Multithreading Models
Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

CSE 30341 — Operating System Principles 3

Definition

* Process: group resources together

* Thread: entity scheduled for execution in a
process

* “Single sequential stream of instructions
within a process”

* “Lightweight process”

CSE 30341 — Operating System Principles 4

Thread of Execution

thread —> ;

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

S| ¢

g_

— thread

Smgle-threaded proce%& 30341 - Operating Systemng

rinciples

ultithreaded process

Thread vs. Process

* Threads have their own:

— Thread ID (TID) (compare to PID)

— Program counter (PC)
— Register set

— Stack

* Threads commonly share:

— Code section (text)
— Data section

— Resources (files, signals, etc.)

CSE 30341 — Operating System Principles

1/25/16

Why Threads?

* Enable multi-tasking within an app

— Update display

— Fetch data

— Spell checking

— Answer a network request
* Reduced cost (“lightweight” process)

— Processes are heavy to create

— IPC for threads cheaper/easier than processes
* Can “simplify” code & increase efficiency

* Kernels are generally multithreaded (different threads
provide different OS services)

CSE 30341 — Operating System Principles 7

Multi-Threaded Server

(2) create new
(1) request thread to service

the request
server

(thread pool)

() resume listening
for additional
client requests

CSE 30341 — Operating System Principles 8

1/25/16

Benefits

* Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

* Resource Sharing — threads share resources of process,
easier than shared memory or message passing

* Economy — cheaper than process creation, thread
switching lower overhead than context switching

* Scalability — process can take advantage of multiprocessor
architectures

CSE 30341 — Operating System Principles 9

Multicore Systems

Multi-core Processor

Individual Individual Individual Individual
Memory Memory Memory Memory

ared Memory

Bus Interface
K A /

Chip Boundary

N

CSE 30341 — Operating System Principles 10

1/25/16

Multicore Programming

* Multicore systems putting pressure on programmers;
challenges include:

— Dividing activities (which tasks to parallelize)

Balance (if/how to parallelize tasks)

Data splitting (how to divide data)

Data dependency (thread synchronization)

Testing and debugging (how to test different execution paths)

* Parallelism implies a system can perform more than one task
simultaneously

* Concurrency supports more than one task making progress
— Single processor/core, scheduler providing concurrency

CSE 30341 — Operating System Principles 11

Concurrency vs. Parallelism

B Concurrent execution on single-core system

singecore | Ty | To | T3 | Ty | Ty | T2 | T3 [Tg4 | Ty

time

B Parallelism on a multi-core system

coret | Ty T3 | Ty T3 | Ty

core2 | To T4 T T4 To

time

CSE 30341 — Operating System Principles 12

1/25/16

Multicore Programming

* Types of parallelism

— Data parallelism — distributes subsets of the same
data across multiple cores, same operation on
each

— Task parallelism — distributing threads across
cores, each thread performing unique operation

* As # of threads grows, so does architectural
support for threading (“hyperthreading”)
— CPUs have cores as well as hardware threads

— Consider Oracle SPARC T4 with 8 cores and 8
hardware threads per core

CSE 30341 — Operating System Principles

13

Data vs. Task Parallelism

* Count number of times each
character in alphabet occurs
* Data Parallelism
— Thread 1 does page 1-100
— Thread 2 does page 100-200
* Task Parallelism
— Thread 1 does letters A-F, all pages)
— Thread 2 does letters G-L, all pages

CSE 30341 — Operating System Principles

14

1/25/16

Single and Multithreaded Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread ——> ; <«— thread

single-threaded process

multithreaded process

User Threads and Kernel Threads

* User threads - management done by user-level threads library

* Three primary thread libraries:
— POSIX Pthreads
— Win32 threads

— Javathreads

* Kernel threads - Supported by the Kernel, “schedulable entity”
* Examples —virtually all general purpose operating systems,

including:

— Windows
— Solaris

— Linux
Tru64 UNIX
Mac OS X

CSE 30341 — Operating System Principles

16

1/25/16

Multithreading Models

* Many-to-One

* One-to-One

* Many-to-Many

CSE 30341 — Operating System Principles 17

Many-to-One

* Many user-level threads mapped to

block

* Multiple threads may not run in
parallel on multicore system because
only one may be in kernel at a time

single kernel thread
* One thread blocking causes all to ; ;
; §<— user thread
* Few systems currently use this model

* Examples:
— Solaris Green Threads <«~—kernel thread
— GNU Portable Threads

CSE 30341 — Operating System Principles 18

1/25/16

One-to-One

* Each user-level thread maps to kernel thread
* Creating a user-level thread creates a kernel thread
* More concurrency than many-to-one

* Number of threads per process sometimes restricted
due to overhead

<«— user thread

* Examples

CSE 30341 — Operating System Principles

— Windows NT/XP/2000
— Linux
— Solaris 9 and later <— kernel thread

19

Many-to-Many Model

* Allows many user level
threads to be mapped to
many kernel threads

* Allows the operating system ; ; ; ;_use,mread

to create a sufficient number
of kernel threads

* Solaris prior to version 9

* Windows NT/2000 with the

ThreadFiber package «—— kemel thread

CSE 30341 — Operating System Principles

20

1/25/16

10

1/25/16

Two-level Model

e Similar to M:M, except that it allows a
user thread to be bound to kernel thread

S

e Examples ; ; ; T
— |RIX
— HP-UX
— Tru64 UNIX
— Solaris 8 and earlier @ —— kemelthread

CSE 30341 — Operating System Principles 21

Thread Libraries

* Thread library provides programmer with
API for creating and managing threads

* Two primary ways of implementing
— Library entirely in user space
— Kernel-level library supported by the OS

CSE 30341 — Operating System Principles 22

11

Pthreads

* May be provided either as user-level or kernel-level

* A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

* Specification, not implementation

* APl specifies behavior of the thread library,
implementation is up to development of the library

e Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

CSE 30341 — Operating System Principles

23

Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])

{

pthread t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (arge != 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}

if (atoi(argv([1]) < 0) {
fprintf (stderr,"%d must be >= 0\n",atoi(argv[1]));
return -1;

}

CSE 30341 — Operating System Principles

24

1/25/16

12

Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv[i]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{
int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread exit(0);
}

Figure 4.9 Multithreaded C program using the Pthreads API.

25

Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers [NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Figure 4.10 Pthread code for joining ten threads.

CSE 30341 — Operating System Principles

26

1/25/16

13

Implicit Threading

* Growing in popularity as numbers of threads
increase, program correctness more difficult with
explicit threads

* Creation and management of threads done by
compilers and run-time libraries rather than
programmers

* Examples:
— Thread Pools
— OpenMP
— Grand Central Dispatch
— Microsoft Threading Building Blocks (TBB)

CSE 30341 — Operating System Principles 27

Thread Pools

* Create a number of threads in a pool where they await work
* Advantages:

— Usually slightly faster to service a request with an existing thread than create a new
thread

— Allows the number of threads in the application(s) to be bound to the size of the pool

— Separating task to be performed from mechanics of creating task allows different
strategies for running task
* i.e., tasks could be scheduled to run periodically

* Windows API:
ThreadPool.QueueUserWorkltem(new WaitCallback(ThreadProc));
static void ThreadProc(Object stateinfo) {

}

CSE 30341 — Operating System Principles 28

1/25/16

14

OpenMP

* Set of compiler directives and an API #include <omp.h>
for C.’ C++ FORTRAN #include <stdio.h>
¢ Provides support for parallel
programming in shared-memory

environments int main(int argc, char *argv([])
* Identifies parallel regions — blocks of {

code that can run in parallel /* sequential code */
#pragma omp parallel #pragma omp parallel

Create as many threads as there are cores

#pra omp parallel for printf("I am a parallel region.");

for (i=0;i<N;i++) {
c[i] = a[i] + b[il;
} /* sequential code */
Run for loop in parallel
return 0;

CSE 30341 — Operating System Principles 29

Grand Central Dispatch

* Apple technology for Mac OS X and iOS operating systems
* Extensions to C, C++ languages, API, and run-time library
* Allows identification of parallel sections
* Manages most of the details of threading
* Blockisin “M} - “{ printf("I am a block"); }
* Blocks placed in dispatch queue
— Assigned to available thread in thread pool when removed from queue
* Two types of dispatch queues:

— serial — blocks removed in FIFO order, queue is per process, called main
queue
* Programmers can create additional serial queues within program
— concurrent —removed in FIFO order but several may be removed at a
time
* Three system wide queues with priorities low, default, high

dispatch.queue_t queue = dispatch.get.-global_queue
(DISPATCH-QUEUE_PRIORITY DEFAULT, O0);

dispatch.async (queue, ~{ printf ("I am a block."); }); 30

1/25/16

15

Threading Issues:
Semantics of fork() and exec()

* Does fork () duplicate only the calling thread

or all threads?

— When is duplicating all threads a really bad idea?
— Some OSes have two versions of fork

— POSIX: only the calling thread

* Exec () usually works as normal — replace the

running process including all threads

CSE 30341 — Operating System Principles

31

Threading Issues:
Signal Handling

* Signals are used in UNIX systems to notify a process
that a particular event has occurred.
* Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

* Every signal has default handler that kernel runs when

handling signal
— User-defined signal handler can override default
— For single-threaded, signal delivered to process

CSE 30341 — Operating System Principles

32

1/25/16

16

Threading Issues:
Thread Cancellation

+ Terminating a thread before it has finished
» Thread to be canceled is target thread

« Two general approaches:
— Asynchronous cancellation terminates the target thread
immediately
— Deferred cancellation allows the target thread to periodically
check if it should be cancelled

» Pthread code to create and cancel a thread:

pthread t tid;

/% create the thread */
pthread.create(&tid, 0, worker, NULL);

/+ cancel the thread x/
pthread-cancel (tid) ; 33

Thread Cancellation (Cont.)

* Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state
— pthread_setcancelstate() -> enable/disable
— Pthread_setcanceltype() :

| Mode | State | Type |
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

* If thread has cancellation disabled, cancellation remains pending until
thread enables it
* Default type is deferred
— Cancellation only occurs when thread reaches cancellation point
* pthread testcancel()

* Asynchronous: terminate immediately

CSE 30341 — Operating System Principles 34

1/25/16

17

Thread-Local Storage

* Thread-local storage (TLS) allows each thread to have
its own copy of data

* Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

* Different from local variables

— Local variables visible only during single function invocation
— TLS visible across function invocations

* Similar to static data
— TLS is unique to each thread

CSE 30341 — Operating System Principles 35

Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone () system call

B clone () allows achild task to share the address space of the
parent task (process)

@ Flags control behavior

flag meaning

CLONE_FS File-system information is shared.

CLONE_VM The same memory space is shared.

CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.
CSE 30341 — Operating System Principles 36

1/25/16

18

Recap

What is a thread? Why would one use a
thread?

How does a thread differ from a process?
What are pthreads?
What is a kernel thread?

How does task parallelism differ from data
parallelism?

CSE 30341 — Operating System Principles

37

1/25/16

19

