
2/8/16	

1	

CSE	30341	
Opera,ng	System	Principles	

	

	
Synchroniza2on	

CSE	30341	–	Opera,ng	System	Principles	 2	

Overview	

•  Background	
•  The	Cri,cal-Sec,on	Problem	
•  Peterson’s	Solu,on	
•  Synchroniza,on	Hardware	
•  Mutex	Locks	
•  Semaphores	
•  Classic	Problems	of	Synchroniza,on	
•  Monitors	
•  Synchroniza,on	Examples		
•  Alterna,ve	Approaches	

2/8/16	

2	

CSE	30341	–	Opera,ng	System	Principles	 3	

Objec,ves	

•  To	introduce	the	cri2cal-sec2on	problem,	whose	solu,ons	
can	be	used	to	ensure	the	consistency	of	shared	data	

•  To	present	both	soSware	and	hardware	solu,ons	of	the	
cri,cal-sec,on	problem	

•  To	examine	several	classical	process-synchroniza,on	
problems	

•  To	explore	several	tools	that	are	used	to	solve	process	
synchroniza,on	problems	

CSE	30341	–	Opera,ng	System	Principles	 4	

Background	
•  Processes	can	execute	concurrently	
– May	be	interrupted	at	any	,me,	par,ally	comple,ng	
execu,on	

•  Concurrent	access	to	shared	data	may	result	in	
data	inconsistency	

•  Maintaining	data	consistency	requires	
mechanisms	to	ensure	the	orderly	execu,on	of	
coopera,ng	processes	

	

2/8/16	

3	

CSE	30341	–	Opera,ng	System	Principles	 5	

Example	

Suppose	that	we	wanted	to	provide	a	solu,on	
to	the	consumer-producer	problem.		
	
We	can	do	so	by	having	an	integer	count	
that	keeps	track	of	the	slots	taken.		As	we	
add	things,	count	grows.		As	we	consume	
things,	count	shrinks.	

CSE	30341	–	Opera,ng	System	Principles	 6	

Illustra,on	

Main	Thread	

Producer	Thread	(TP)	 Consumer	Thread	(TC)	

Global	Variable	
count

Data	gets	
produced	

Data	gets	
consumed	

count	=	0			No	data,	buffer	empty	

count	=	5			Full	of	data,	no	room	

2/8/16	

4	

CSE	30341	–	Opera,ng	System	Principles	 7	

Code	
int count = 0;
int in = 0;
int out = 0;

int main (int argc, char * argv[])
{
 pthread_t tC, tP;

 pthread_create(&tP, NULL, thread_Producer, NULL, NULL);
 pthread_create(&tC, NULL, thread_Consumer, NULL, NULL);

 /* Hang around for them to be done (never) */
 pthread_join(tP);
 pthread_join(tC);

 return 1;
}

Address	of	func,ons	

We	get	two	threads	that	will	be	execu,ng	
	in	addi,on	to	our	main	thread	

CSE	30341	–	Opera,ng	System	Principles	 8	

Producer		
void thread_Producer (void * pData)
{
 while (1)
 {

 /* produce an item in next produced */

 while (count == BUFFER SIZE) ;
 /* do nothing */

 /* Space in the buffer! */

 buffer[in] = next_produced;
 in = (in+1)%BUFFER_SIZE;
 count++;

 }
}

If	the	buffer	is	full,	
	hold	up	

2/8/16	

5	

CSE	30341	–	Opera,ng	System	Principles	 9	

Consumer	
void thread_Consumer (void * pData)

{
 while (1)

 {

 while (count == 0)

 ; /* do nothing */

 next_consumed = buffer[out];
 out = (out+1)%BUFFER_SIZE;

 count--;
 /* consume the item in next consumed */

 }

}

If	the	buffer	is	empty,	
	hold	up	

CSE	30341	–	Opera,ng	System	Principles	 10	

Race	Condi,on	

•  count++:	
register1	=	count	
register1	=	register1	+	1	
count	=	register1	
	

•  count--:	
register1	=	count	
register1	=	register1	-	1	
count	=	register1	

2/8/16	

6	

CSE	30341	–	Opera,ng	System	Principles	 11	

Race	Condi,on	

•  Assume	count=5	
Step	1:	Producer:	register1	=	count	(register1	=	?)	
Step	2:	Producer:	register1	=	register1	+	1	(?)	
Step	3:	Consumer:	register2	=	count	(register2	=	?)	
Step	4:	Consumer:	register2	=	register2	–	1	(?)	
Step	5:	Producer:	count	=	register1	(count	=	?)	
Step	6:	Consumer:	count	=	register2	(count	=	?)	

CSE	30341	–	Opera,ng	System	Principles	 12	

Cri,cal	Sec,on	Problem	
•  Consider	system	of	n	processes	{p0,	p1,	…	pn-1}	

•  Each	process	has	cri2cal	sec2on	segment	of	code	
–  Process	may	be	changing	common	variables,	upda,ng	table,	wri,ng	file,	etc.	
–  When	one	process	in	cri,cal	sec,on,	no	other	may	be	in	its	cri,cal	sec,on	

	
•  Cri2cal	sec2on:	sec2on	in	code	where	race	condi2ons	can	occur!	
•  Cri2cal	sec2on	problem	is	to	design	protocol	to	solve	this	

•  Each	process	must	ask	permission	to	enter	cri,cal	sec,on	in	entry	sec2on,	
may	follow	cri,cal	sec,on	with	exit	sec2on,	then	remainder	sec2on	

	

2/8/16	

7	

CSE	30341	–	Opera,ng	System	Principles	 13	

Cri,cal	Sec,on	

•  General	structure	of	process	pi	is	

CSE	30341	–	Opera,ng	System	Principles	 14	

Solu,on	to	Cri,cal-Sec,on	Problem	

1.	Mutual	Exclusion	-	If	process	Pi	is	execu,ng	in	its	cri,cal	sec,on,	
then	no	other	processes	can	be	execu,ng	in	their	cri,cal	sec,ons	

2.	Progress	-	If	no	process	is	execu,ng	in	its	cri,cal	sec,on	and	there	
exist	some	processes	that	wish	to	enter	their	cri,cal	sec,on,	then	
the	selec,on	of	the	processes	that	will	enter	the	cri,cal	sec,on	
next	cannot	be	postponed	indefinitely	

3.	Bounded	Wai2ng	-		A	bound	must	exist	on	the	number	of	,mes	that	
other	processes	are	allowed	to	enter	their	cri,cal	sec,ons	aSer	a	
process	has	made	a	request	to	enter	its	cri,cal	sec,on	and	before	
that	request	is	granted	

2/8/16	

8	

CSE	30341	–	Opera,ng	System	Principles	 15	

Peterson’s	Solu,on	

•  Good	algorithmic		descrip,on	of	solving	the	problem	

•  Two	process	solu,on	

•  Assume	that	the	load and	store	instruc,ons	are	atomic;	that	is,	they	
cannot	be	interrupted	

•  The	two	processes	share	two	variables:	
–  int turn;
–  Boolean flag[2]

•  The	variable	turn	indicates	whose	turn	it	is	to	enter	the	cri,cal	sec,on	

•  The	flag array	is	used	to	indicate	if	a	process	is	ready	to	enter	the	
cri,cal	sec,on.	flag[i] = true	implies	that	process	Pi	is	ready!	

CSE	30341	–	Opera,ng	System	Principles	 16	

Algorithm	for	Process	Pi	
 do {
 flag[i] = true;
 turn = j;
 while (flag[j] && turn == j);
 critical section
 flag[i] = false;
 remainder section
 } while (true);

	
	
1.  Mutual	exclusion	is	preserved	
2.  Progress	requirement	is	sa,sfied	
3.  Bounded-wai,ng	requirement	is	met	

2/8/16	

9	

CSE	30341	–	Opera,ng	System	Principles	 17	

Synchroniza,on	Hardware	

•  Many	systems	provide	hardware	support	for	cri,cal	sec,on	code	

•  All	solu,ons	below	based	on	idea	of	locking	
–  Protec,ng	cri,cal	regions	via	locks	

•  Uniprocessors	–	could	disable	interrupts	
–  Currently	running	code	would	execute	without	preemp,on	
–  Generally	too	inefficient	on	mul,processor	systems	

•  Opera,ng	systems	using	this	not	broadly	scalable	

•  Modern	machines	provide	special	atomic	hardware	instruc,ons	
•  Atomic	=	non-interrup,ble	

–  Either	test	memory	word	and	set	value	(TestAndSet())	
–  Or	swap	contents	of	two	memory	words	(Swap())	

CSE	30341	–	Opera,ng	System	Principles	 18	

Solu,on	to	Cri,cal-sec,on	Problem	Using	Locks	

 do {
 acquire lock
 critical section
 release lock
 remainder section
 } while (TRUE);

2/8/16	

10	

CSE	30341	–	Opera,ng	System	Principles	 19	

TestAndSet	Instruc,on		

	
•  Defini,on:	

 boolean TestAndSet (boolean *target)
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }

	

CSE	30341	–	Opera,ng	System	Principles	 20	

Solu,on	using	test_and_set()	
•  Shared	boolean	variable	lock,	ini,alized	to	FALSE	
•  Solu,on:	

do {
 while (TestAndSet(&lock))
 ; /* do nothing */
 /* critical section */
 lock = FALSE;
 /* remainder section */
} while (TRUE);
	
																

2/8/16	

11	

CSE	30341	–	Opera,ng	System	Principles	 21	

Swap	Instruc,on	

	
•  Defini,on:	

void Swap(boolean *a, boolean *b) {
 boolean temp = *a;
 *a = *b

 *b = temp;
}

	

CSE	30341	–	Opera,ng	System	Principles	 22	

Solu,on	using	Swap	
•  Shared	Boolean	variable	lock	ini,alized	to	FALSE;	each	

process	has	a	local	Boolean	variable	key	
•  Solu,on:	

do {

 key = TRUE;
 while (key == TRUE)
 Swap(&lock, &key);
 /* critical section */

 lock = FALSE;
 /* remainder section */
} while (TRUE);
																

2/8/16	

12	

CSE	30341	–	Opera,ng	System	Principles	 23	

Bounded-wai,ng	Mutual	Exclusion	with	TestAndSet	

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = false;
 /* critical section */
 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j + 1) % n;
 if (j == i)
 lock = false;
 else
 waiting[j] = false;
 /* remainder section */
} while (true);

CSE	30341	–	Opera,ng	System	Principles	 24	

Mutex	Locks	
•  Previous	solu,ons	are	complicated	and	generally	inaccessible	to	applica,on	

programmers!	
•  OS	designers	build	soSware	tools	to	solve	cri,cal	sec,on	problem	
•  Simplest	is	mutex	lock	
•  Protect	cri,cal	regions	with	it	by	first	acquire()	a	lock	then	release()	it	

–  Boolean	variable	indica,ng	if	lock	is	available	or	not	
	

•  Calls	to	acquire()	and	release()	must	be	atomic	
–  Usually	implemented	via	hardware	atomic	instruc,ons	

•  But	this	solu,on	requires	busy	wai2ng	
•  This	lock	therefore	called	a	spinlock	

	

2/8/16	

13	

CSE	30341	–	Opera,ng	System	Principles	 25	

acquire()	and	release()	
acquire() {
 while (!available)
 ; /* busy wait */
 available = false;;
}

release() {
 available = true;
}

do {
 acquire lock

 critical section
 release lock
 remainder section
} while (true);

	

CSE	30341	–	Opera,ng	System	Principles	 26	

Semaphore	
•  Synchroniza,on	tool	that	does	not	require	busy	wai,ng		
•  Semaphore	S	–	integer	variable	
•  Two	standard	opera,ons	modify	S:	wait()	and	signal()

–  Originally	called	P()	and	V()
•  Less	complicated	
•  Can	only	be	accessed	via	two	indivisible	(atomic)	opera,ons	

wait (S) {
 while (S <= 0)
 ; // busy wait
 S--;
}
signal (S) {
 S++;
}

2/8/16	

14	

CSE	30341	–	Opera,ng	System	Principles	 27	

Semaphore	Usage	

•  Coun2ng	semaphore	–	integer	value	can	range	over	an	unrestricted	
domain	

•  Binary	semaphore	–	integer	value	can	range	only	between	0	and	1	
–  Then	a	mutex	lock	

•  Consider	P1		and	P2	that	require	S1	to	happen	before	S2	
P1:
 S1;
 signal(synch);
P2:
 wait(synch);
 S2;	

CSE	30341	–	Opera,ng	System	Principles	 28	

Semaphore	Implementa,on	
•  Must	guarantee	that	no	two	processes	can	execute	wait() and	

signal() on	the	same	semaphore	at	the	same	,me	

•  Thus,	implementa,on	becomes	the	cri,cal	sec,on	problem	where	
the	wait	and	signal	code	are	placed	in	the	cri,cal	sec,on	
–  Could	now	have	busy	wai2ng	in	cri,cal	sec,on	implementa,on	

•  But	implementa,on	code	is	short	
•  Liple	busy	wai,ng	if	cri,cal	sec,on	rarely	occupied	

•  Note	that	applica,ons	may	spend	lots	of	,me	in	cri,cal	sec,ons	
and	therefore	this	is	not	a	good	solu,on	

		
	

2/8/16	

15	

CSE	30341	–	Opera,ng	System	Principles	 29	

Semaphore	Implementa,on		
with	no	Busy	Wai,ng		

•  With	each	semaphore	there	is	an	associated	wai,ng	
queue	

•  Each	entry	in	a	wai,ng	queue	has	two	data	items:	
–  	value	(of	type	integer)	
–  	pointer	to	next	record	in	the	list	
	

•  Two	opera,ons:	
–  block	–	place	the	process	invoking	the	opera,on	on	the	
appropriate	wai,ng	queue	

–  wakeup	–	remove	one	of	processes	in	the	wai,ng	queue	
and	place	it	in	the	ready	queue	

																									

CSE	30341	–	Opera,ng	System	Principles	 30	

Semaphore	Implementa,on	
wait(semaphore	*S)	{	

	S->value--;	
	if	(S->value	<	0)	{	
	 	add	this	process	to	S->list;	
	 	block();	
	}	

}	
	
signal(semaphore	*S)	{	

	S->value++;	
	if	(S->value	<=	0)	{	
	 	remove	a	process	from	S->list;	
	 	wakeup(P);	
	}	

}	

2/8/16	

16	

CSE	30341	–	Opera,ng	System	Principles	 31	

Deadlock	and	Starva,on	
•  Deadlock	–	two	or	more	processes	are	wai,ng	indefinitely	for	an	

event	that	can	be	caused	by	only	one	of	the	wai,ng	processes	
•  Let	S	and Q be	two	semaphores	ini,alized	to	1	
	 		P0 	P1	
 wait(S); wait(Q);
 wait(Q); wait(S);
 . .
 signal(S); signal(Q);
 signal(Q); signal(S);

•  Starva2on	–	indefinite	blocking			
–  A	process	may	never	be	removed	from	the	semaphore	queue	in	which	

it	is	suspended	

•  Priority	Inversion	–	Scheduling	problem	when	lower-priority	
process	holds	a	lock	needed	by	higher-priority	process	

CSE	30341	–	Opera,ng	System	Principles	 32	

Classical	Problems	of	Synchroniza,on	

•  Classical	problems	used	to	test	newly-
proposed	synchroniza,on	schemes	

– Bounded-Buffer	Problem	

– Readers	and	Writers	Problem	

– Dining-Philosophers	Problem	

2/8/16	

17	

CSE	30341	–	Opera,ng	System	Principles	 33	

Bounded-Buffer	Problem	

•  n	buffers,	each	can	hold	one	item	

•  Semaphore	mutex	ini,alized	to	the	value	1	

•  Semaphore	full	ini,alized	to	the	value	0	

•  Semaphore	empty ini,alized	to	the	value	n	

CSE	30341	–	Opera,ng	System	Principles	 34	

Bounded	Buffer	Problem	(Cont.)	
•  The	structure	of	the	producer	process	

do {
 ...
 /* produce an item in next_produced */
 ...
 wait(empty);
 wait(mutex);
 ...
 /* add next produced to the buffer */
 ...
 signal(mutex);
 signal(full);
} while (true);

2/8/16	

18	

CSE	30341	–	Opera,ng	System	Principles	 35	

Bounded	Buffer	Problem	(Cont.)	
•  The	structure	of	the	consumer	process	

do {
 wait(full);
 wait(mutex);
 ...
 /* remove an item from buffer to next_consumed */
 ...
 signal(mutex);
 signal(empty);
 ...
 /* consume the item in next consumed */
 ...
} while (true);

	

CSE	30341	–	Opera,ng	System	Principles	 36	

Readers-Writers	Problem	
•  A	data	set	is	shared	among	a	number	of	concurrent	processes	

–  Readers	–	only	read	the	data	set;	they	do	not	perform	any	updates	
–  Writers			–	can	both	read	and	write	

	
•  Problem	–	allow	mul,ple	readers	to	read	at	the	same	,me	

–  Only	one	single	writer	can	access	the	shared	data	at	the	same	,me	
	
•  Shared	Data	

–  Data	set	
–  Semaphore wrt ini,alized	to	1	
–  Semaphore	mutex ini,alized	to	1	
–  Integer	read_count	ini,alized	to	0	

2/8/16	

19	

CSE	30341	–	Opera,ng	System	Principles	 37	

Readers-Writers	Problem	(Cont.)	
•  The	structure	of	a	writer	process	
									
do {
 wait(wrt);
 ...
 /* writing is performed */
 ...
 signal(wrt);
} while (true);

	
	
								

CSE	30341	–	Opera,ng	System	Principles	 38	

Readers-Writers	Problem	(Cont.)	
•  The	structure	of	a	reader	process	
									

do {
wait(mutex);

 read_count++;
if (read_count == 1)

 wait(wrt);
 signal(mutex);
 ...

/* reading is performed */
 ...
 wait(mutex);
 read_count--;
if (read_count == 0)

 signal(wrt);
 signal(mutex);
} while (true);	
	
								

2/8/16	

20	

CSE	30341	–	Opera,ng	System	Principles	 39	

Dining-Philosophers	Problem	

•  Philosophers	spend	their	lives	thinking	and	ea,ng	
•  Don’t	interact	with	their	neighbors,	occasionally	
try	to	pick	up	2	chops,cks	(one	at	a	,me)	to	eat	
from	bowl	
– Need	both	to	eat,	then	release	both	when	done	

•  In	the	case	of	5	philosophers	
–  Shared	data		

•  Bowl	of	rice	(data	set)	
•  Semaphore	chops,ck	[5]	ini,alized	to	1	

CSE	30341	–	Opera,ng	System	Principles	 40	

		Dining-Philosophers	Problem	
Algorithm	

•  The	structure	of	Philosopher	i:	
	

do		{		
											wait	(chops,ck[i]);	

						wait	(chopS,ck[(i	+	1)	%	5]);	
		
														//		eat	

	
						signal	(chops,ck[i]);	
						signal	(chops,ck[(i	+	1)	%	5]);	
		

																	//		think	
	
}	while	(TRUE);	
	

•  What	is	the	problem	with	this	algorithm?	
	

2/8/16	

21	

CSE	30341	–	Opera,ng	System	Principles	 41	

Monitors	
•  A	high-level	abstrac,on	that	provides	a	convenient	and	effec,ve	mechanism	for	process	

synchroniza,on	
•  Abstract	data	type,	internal	variables	only	accessible	by	code	within	the	procedure	
•  Only	one	process	may	be	ac,ve	within	the	monitor	at	a	,me	
•  But	not	powerful	enough	to	model	some	synchroniza,on	schemes	

	

monitor	monitor-name	
{	
	//	shared	variable	declara,ons	
	procedure	P1	(…)	{	….	}	

	
	procedure	Pn	(…)	{……}	

	
				Ini,aliza,on	code	(…)	{	…	}	
	}	

}	

CSE	30341	–	Opera,ng	System	Principles	 42	

Schema,c	View	of	a	Monitor	

2/8/16	

22	

CSE	30341	–	Opera,ng	System	Principles	 43	

Condi,on	Variables	

•  condi,on	x,	y;	

•  Two	opera,ons	on	a	condi,on	variable:	
– x.wait	()		–	a	process	that	invokes	the	opera,on	is	
suspended	un,l	x.signal	()		

– x.signal	()	–	resumes	one	of	processes	(if	any)	that		
invoked	x.wait	()	
•  If	no	x.wait	()	on	the	variable,	then	it	has	no	effect	on	
the	variable	

CSE	30341	–	Opera,ng	System	Principles	 44	

	Monitor	with	Condi,on	Variables	

2/8/16	

23	

CSE	30341	–	Opera,ng	System	Principles	 45	

Solu,on	to	Dining	Philosophers	
monitor	DiningPhilosophers	
			{		

	enum	{	THINKING;	HUNGRY,	EATING)	state	[5]	;	
	condi,on	self	[5];	

	
	void	pickup	(int	i)	{		
								state[i]	=	HUNGRY;	
								test(i);	
								if	(state[i]	!=	EATING)	self	[i].wait;	
	}	
		

							void	putdown	(int	i)	{		
								state[i]	=	THINKING;	

																			//	test	leS	and	right	neighbors	
									test((i	+	4)	%	5);	
									test((i	+	1)	%	5);	

								}	
		

CSE	30341	–	Opera,ng	System	Principles	 46	

Solu,on	to	Dining	Philosophers	(Cont.)	
	

	void	test	(int	i)	{		
									if	((state[(i	+	4)	%	5]	!=	EATING)	&&	
									(state[i]	==	HUNGRY)	&&	
									(state[(i	+	1)	%	5]	!=	EATING))	{		
														state[i]	=	EATING	;	
	 		self[i].signal	()	;	
										}	
		}	

	
							ini,aliza,on_code()	{		

								for	(int	i	=	0;	i	<	5;	i++)	
								state[i]	=	THINKING;	
	}	

}	

2/8/16	

24	

CSE	30341	–	Opera,ng	System	Principles	 47	

Dining	Philosophers	
	

•  Each	philosopher	i	invokes	the	opera,ons	pickup()	and	
putdown()	in	the	following	sequence:	

	
														DiningPhilosophers.pickup	(i);	
	
																			EAT	
	
														DiningPhilosophers.putdown	(i);	
	
•  No	deadlock,	but	starva,on	is	possible!	
	
	
								

