CSE 30341
Operating System Principles

Memory Management

Overview

Memory Access

Address Binding

Memory Protection

Swapping

Contiguous Memory Allocation
Segmentation

Paging

Structure of the Page Table

CSE 30341 — Operating System Principles 2

2/29/16

Memory Access

mov %eax, 0x4(%esp)

a.out \

<heap>

Instruction

<dynamic libraries>
(e.g., glibc.so)

Pointer

<stack>

Main Memory

CSE 30341 — Operating System Principles 3

Program Execution & Memory

* Program (code & data) must be loaded into
memory (from where?)

* Main memory & registers are the only storage
the CPU can access

* Access to register: <=1 clock cycle

* Access to memory: multiple cycles (“memory
stall”)

* Cache sits between main memory & CPU
* Protection of memory needed

CSE 30341 — Operating System Principles 4

2/29/16

2/29/16

Variables & Storage Locations

>
/,aeout (text + data)
int global_variable; /

. . < >
const int constant_variable = 5; - L

<dynamic libraries>
I~ (e.g., glibc.so)

int main(int argc,-char *argv|
int *dynamic_variable-="malloc(sizeof(int));
int local_variable;

return O;
}
<stack>
Main Memory
CSE 30341 — Operating System Principles
Base and Limit Registers
0 Base: start address
operating - . .
i * Limit: size
256000
process
300040 [aoowo] © CPU must check every
process base memory access to be sure it
sao0ts o] IS between base and limit for
rocess mt that user
550000 » Processes cannot be moved!
S » Processes cannot share
memory!
CSE 30341 — Operating System Principles 6

Hardware Address Protection

All memory addressing requires two comparisons and an add!

base base + limit

address yes

yes

no no

trap to operating system
monitor—addressing error

memory

CSE 30341 — Operating System Principles 7

Address Binding

« Compile time: If memory location known a priori,

absolute code can be generated
code if starting location changes

; must recompile

* Load time: Must generate relocatable code if
memory location is not known at compile time

» Execution time: Binding delayed
the process can be moved during

until run time if
its execution

from one memory segment to another
— Need hardware support for address maps (e.g., base

and limit registers)

CSE 30341 - Operating System Princip|

les 8

2/29/16

Address Binding

linkage
editor

/Ioad\) y load

//s stem \\mod ule/
ry

CSE 30341 — Operating System Principles

Logical & Physical Address

* Physical address — address seen by the
memory unit

* Logical address — generated by the CPU; also
referred to as virtual address

» Compile-time & Load-time: same!
» Execution-time: differ!

* Logical address space is the set of all logical
addresses generated by a program

* Physical address space is the set of all
physical addresses generated by a program

CSE 30341 — Operating System Principles

10

2/29/16

Memory Management Unit - MMU

« Hardware device that at run time maps
virtual to physical address

e Simplest MMU: add value in relocation
register to logical address before accessing
memory -

relocation
register

logical physical
address /\ address
CPU Q memory

346 14346

MMU

CSE 30341 — Operating System Principles 11

Dynamic Linking

+ Static linking — system libraries and program code combined
by the loader into the binary program image

+ Dynamic linking — linking postponed until execution time

» Small piece of code, stub, used to locate the appropriate
memory-resident library routine

» Stub replaces itself with the address of the routine and
executes the routine

» Operating system checks if routine is in processes’ memory
address
— If not in address space, add to address space
+ Dynamic linking is particularly useful for libraries
» System also known as shared libraries

CSE 30341 — Operating System Principles 12

2/29/16

Swapping

* Process temporarily moved to backing store.

* Backing store: disk space containing process
images.

* Roll-out roll-in: type of swapping where lower-
priority process gets swapped out to make room
for higher-priority process.

* Swapping typically very costly!

— Typically disabled; starts when used memory goes

above certain threshold and disabled again when it
falls below threshold

— Impacts context switch time

CSE 30341 — Operating System Principles 13

Swapping

operating S

system

P
@ swap out process

1

) process P,

@ swap in

&]

- =t

user L/
pEEE backing store
main memory

CSE 30341 — Operating System Principles 14

2/29/16

2/29/16

Swapping

* Constraints:

— Don’t swap memory with pending I/O (or always transfer
I/0 to kernel space and then user space — double
buffering)

* Mobile:

— Not typically supported; small amount of flash memory;
large delays for writing/reading to/from flash

— i0S asks apps to give up memory (read-only data thrown
out and restored from flash when needed; iOS can force
termination if needed)

— Android terminates apps if low on memory (write
application state to flash for quick restart)

CSE 30341 — Operating System Principles 15

Contiguous Allocation

* OS & processes share

memo ry og;srginrlg

* Each process in single sl
contiguous section of o000 ['s00040 |
m e m O ry process base

420940 VZUETY

limit

process

880000

1024000

CSE 30341 — Operating System Principles 16

Contiguous Allocation

+ Base (relocation) register contains value of smallest physical address

« Limit register contains range of logical addresses — each logical address
must be less than the limit register

+ MMU maps logical address dynamically

limit relocation
register register
logical physical
address yes address
CPU < < + memo
A4 i

no

¥
trap: addressing error

CSE 30341 — Operating System Principles 17

Multiple/Variable-Partition Allocation

» Degree of multiprogramming limited by number of partitions

+ Variable-partition sizes for efficiency

+ Hole: block of available memory

* New process: allocate memory from a hole large enough to accommodate it
« Terminating process: free partition (adjacent free partitions combined)

» Operating system maintains information about: allocated partitions and
free partitions (holes)

0os [OF] 0s 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |——> —> C—>| process 10
process 2 process 2 process 2 process 2
CSE 30341 — Operating System Principles 18

2/29/16

Dynamic Storage-Allocation Problem

* First-fit: allocate the first hole that is big
enough

+ Best-fit: allocate the smallest hole that is big
enough; must search entire list, unless
ordered by size

— Produces the smallest leftover hole

» Worst-fit: Allocate the largest hole; must
also search entire list

— Produces the largest leftover hole

CSE 30341 — Operating System Principles 19

Fragmentation

+ External Fragmentation — total memory
space exists to satisfy a request, but it is not
contiguous

* Internal Fragmentation — allocated memory
may be slightly larger than requested
memory; this size difference is memory
internal to a partition, but not being used

« First fit analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation

CSE 30341 — Operating System Principles 20

2/29/16

10

Fragmentation

» Reduce external fragmentation by
compaction

— Shuffle memory contents to place all free memory
together in one large block

— Compaction is possible only if relocation is
dynamic, and is done at execution time

— 1/O problem
+ Latch job in memory while it is involved in 1/O
* Do I/0 only into OS buffers

* Now consider that backing store has same
fragmentation problems

CSE 30341 — Operating System Principles 21

Segmentation

+ Memory-management scheme that supports user view of
memory

« Aprogram is a collection of segments; logical units such
as:

main program

procedure

function

method

object

local variables, global variables
common block & shared memory
stack

symbol table

arrays

CSE 30341 — Operating System Principles 22

2/29/16

11

User’s View of Program

subroutine

main
program

logical address

23

Logical View of Segmentation

user space physical memory space

CSE 30341 — Operating System Principles

24

2/29/16

12

Segmentation Architecture

 Logical address consists of a two tuple:
<segment-number, offset>,

+ Segment table:

— base — contains the starting physical address where
the segments reside in memory

— limit — specifies the length of the segment

+ Segment-table base register (STBR) points to
the segment table’s location in memory

+ Segment-table length register (STLR) indicates
number of segments used by a program,;

segment number s is legal if s < STLR

CSE 30341 — Operating System Principles

25

Segmentation Architecture

* Protection
— With each entry in segment table associate:
« validation bit = 0 = illegal segment
* read/write/execute privileges
* Protection bits associated with segments;
code sharing occurs at segment level

» Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

* A segmentation example is shown in the
following diagram

CSE 30341 — Operating System Principles

26

2/29/16

13

Segmentation Hardware

— limit |base

segment
table

CPU M s

no

trap: addressing error physical memory

CSE 30341 — Operating System Principles 27

Paging

+ Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

— Avoids external fragmentation
— Avoids problem of varying sized memory chunks
« Divide physical memory into fixed-sized blocks called frames
— Size is power of 2, between 512 bytes and 16 Mbytes
+ Divide logical memory into blocks of same size called pages
+ Keep track of all free frames

+ To run a program of size N pages, need to find N free frames
and load program

+ Set up a page table to translate logical to physical addresses
« Backing store likewise split into pages
+ Still have Internal fragmentation

CSE 30341 — Operating System Principles 28

2/29/16

14

Address Translation Scheme

» Address generated by CPU is divided into:

— Page number (p) — used as an index into a page
table which contains base address of each page in
physical memory

— Page offset (d) — combined with base address to
define the physical memory address that is sent to the

memory unit
page number page offset
C ;
m -n n

— For given logical address space 2™and page size 2

CSE 30341 — Operating System Principles 29

Paging Hardware

logical physical
— address address ~ f0000 ... 0000

- 1111 ... 111

f

physical
memory

page table

CSE 30341 — Operating System Principles 30

2/29/16

15

frame
number
page O 0
page 1 1| page O
page 2 2
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory
CSE 30341 — Operating System Principles 31
Paging Example
0f|a 0
1]b
2|¢c
3|d
4] e 4 i
d ofs] k
71lh 1 |
8 l 2(1 8 m
=i S 5
bl | page table P
12| m 12
13| n
14| o
15| p
logical memory 16
20 a
b
c
d
24 | ©
f
g
h
28
physical memory
n=2 and m=5 32-byte memory and 4-byte pages
CSE 30341 — Operating System Principles 32

2/29/16

16

Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 [page 0
15
15 15
16 16
17 17
18 18 |page 2
19 0 19
1
20 2 20 [page 3
3
21 new-process page table 21
(a)) (b))
Before allocation After allocation
CSE 30341 — Operating System Principles 33

Page Table Implementation

+ Page table is kept in main memory

« Page-table base register (PTBR) points to the page
table

+ Page-table length register (PTLR) indicates size of
the page table

* In this scheme every data/instruction access requires
two memory accesses
— One for the page table and one for the data / instruction

* The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside
buffers (TLBs)

CSE 30341 — Operating System Principles 34

2/29/16

17

Associative Memory

« Associative memory — parallel search

Page # Frame #

- Address translation (p, d)
— If p is in associative register, get frame # out
— Otherwise get frame # from page table in memory

CSE 30341 — Operating System Principles

35

Page Table Implementation

+ Some TLBs store address-space identifiers

(ASIDs) in each TLB entry — uniquely
identifies each process to provide address-
space protection for that process
— Otherwise need to flush at every context switch
« TLBs typically small (64 to 1,024 entries)
* On a TLB miss, value is loaded into the TLB
for faster access next time
— Replacement policies must be considered

— Some entries can be wired down for permanent
fast access

CSE 30341 — Operating System Principles

36

2/29/16

18

Paging Hardware with TLB

logical
address

CPU p
page frame
number number
TLB hit physical
address
f[d}F—>
TLB
p {
TLB miss
f
- physical
memory
page table
CSE 30341 — Operating System Principles 37

Memory Protection

* Memory protection implemented by associating
protection bit with each frame to indicate if read-only
or read-write access is allowed

— Can also add more bits to indicate page execute-only, and
SO on

+ Valid-invalid bit attached to each entry in the page

table:

— “valid” indicates that the associated page is in the
process logical address space, and is thus a legal page

— “invalid” indicates that the page is not in the process’
logical address space

— Or use page-table length register (PTLR)
* Any violations result in a trap to the kernel

CSE 30341 — Operating System Principles 38

2/29/16

19

Valid/Invalid Bit

0
1
2| page 0
00000 frame number valid—invalid bit
page 0 \ ,/ 3| page 1
0 23RV
page 1 1 31w 4| page 2
2|4|v
age 2 5
- 3 AR
page 3 4(8|v 6
5(9(v
page 4 6loli 7| page 3
10468| page s 7 [8| page 4
12,287 page table
9| page 5
page n
CSE 30341 — Operating System Principles 39

Shared Pages

» Shared code

— One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems)

— Similar to multiple threads sharing the same process
space

— Also useful for interprocess communication if sharing
of read-write pages is allowed

* Private code and data

- (Ianch process keeps a separate copy of the code and
ata

— The pages for the private code and data can appear
anywhere in the logical address space

CSE 30341 — Operating System Principles 40

2/29/16

20

Shared Pages Example

ed1 0
ed2 1| datai
ed3 2| data3
data 1 page table 3| edi
for P, ed 1
process P, 4 ed?2
ed 2
5
ed3
6| ed3
data 2 page table
7| data2
adi for P,
process P,
8
ed2
9
ed3
10
data 3 page table
for Py 11
process P,
CSE 30341 — Operating System Principles 41

Structure of Page Table

« Memory structures for paging can get huge using
straight-forward methods

— Consider a 32-bit logical address space as on modern
computers

— Page size of 4 KB (21?)
— Page table would have 1 million entries (232 / 212)

— If each entry is 4 bytes -> 4 MB of physical address space /
memory for page table alone
« That amount of memory used to cost a lot
« Don’t want to allocate that contiguously in main memory

Hierarchical Paging
Hashed Page Tables
Inverted Page Tables

CSE 30341 — Operating System Principles 42

2/29/16

21

Hierarchical Page Tables

* Break up the logical address space into
multiple page tables

« A simple technique is a two-level page
table

* We then page the page table

CSE 30341 — Operating System Principles

43

Two-Level Page-Table Scheme

0
|

LA -

/ . 10Q
<

™ 100

.
7?3 ~— .
.

outer page ™ 929
table — N <0

:
900 [

page of 929
page table

page table

memory

CSE 30341 — Operating System Principles

44

2/29/16

22

Two-Level Paging Example

» Alogical address (on 32-bit machine with 1K page size) is
divided into:

— apage number consisting of 22 bits
— a page offset consisting of 10 bits

» Since the page table is paged, the page number is further
divided into:
— a 12-bit page number
— a 10-bit page offset

+ Thus, a logical address is as follows:

page number page offset

P; P, d

12 10 10

* where p, is an index into the outer page table, and p, is the
displacement within the page of the inner page table

* Known as forward-mapped page table

CSE 30341 — Operating System Principles

45

Address Translation Scheme

logical address

Pr [P [d |

o

=

outer page
table . {

page of
page table

CSE 30341 — Operating System Principles

46

2/29/16

23

64-bit Logical Address Space

* Even two-level paging scheme not sufficient
* If page size is 4 KB (212)
— Then page table has 252 entries
If two level scheme, inner page tables could be 210 4-byte entries
Address would look like

outer page inner page | page offset
Py Py d

42 10 12
Outer page table has 2%? entries or 2% bytes
One solution is to add a 2" outer page table

But in the following example the 2" outer page table is still 234 bytes
in size
* And possibly 4 memory access to get to one physical memory location

CSE 30341 — Operating System Principles 47

Three-Level Paging Scheme

outer page inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage , offset

Pi P> P3 d
32 10 10 12
CSE 30341 — Operating System Principles 48

2/29/16

24

Hashed Page Tables

» Common in address spaces > 32 bits
« The virtual page number is hashed into a page table

— This page table contains a chain of elements hashing to
the same location

» Each element contains:
— the virtual page number
— the value of the mapped page frame
— a pointer to the next element
+ Virtual page numbers are compared in this chain
searching for a match

— If a match is found, the corresponding physical frame is
extracted

CSE 30341 — Operating System Principles

49

Hashed Page Tables

physical
logical address address

e [d] [r]d]

hysical
—'|QISI’T|j|pI'Ii_|T"' i

hash table

CSE 30341 — Operating System Principles

50

2/29/16

25

Inverted Page Tables

+ Rather than each process having a page table and

keeping track of all possible logical pages, track all
physical pages

One entry for each real page of memory

Entry consists of the virtual address of the page stored
in that real memory location, with information about
the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries
— TLB can accelerate access

CSE 30341 — Operating System Principles 51

Inverted Page Tables

logical
address

physical

address :
. . hysical
cPu Plpd[p[d]| []dpF—— %gﬁfg

\

search l

IS
o
©

page table

CSE 30341 — Operating System Principles 52

2/29/16

26

Oracle SPARC Solaris

» Consider modern, 64-bit operating system example
with tightly integrated HW

— Goals are efficiency, low overhead
» Based on hashing, but more complex

* Two hash tables

— One kernel and one for all user processes

— Each maps memory addresses from virtual to physical
memory

— Each entry represents a contiguous area of mapped virtual
memory,

* More efficient than having a separate hash-table entry for each
page

— Each entry has base address and span (indicating the

number of pages the entry represents)

CSE 30341 — Operating System Principles 53

Intel 32-bit & 64-bit

« Dominant industry chips

* Pentium CPUs are 32-bit and called |A-32
architecture

* Current Intel CPUs are 64-bit and called
|A-64 architecture

* Many variations in the chips, cover the main
ideas here

CSE 30341 — Operating System Principles 54

2/29/16

27

Intel IA-32 Architecture

» Supports both segmentation and
segmentation with paging
— Each segment can be 4 GB
— Up to 16 K segments per process

— Divided into two partitions
« First partition of up to 8K segments are private to
process (kept in local descriptor table (LDT))
» Second partition of up to 8K segments shared

among all processes (kept in global descriptor
table (GDT))

CSE 30341 — Operating System Principles 55

Intel IA-32 Architecture

* CPU generates logical address
— Selector given to segmentation unit

* Which produces linear addresses
s g P
13 1 2
— Linear address given to paging unit
* Which generates physical address in main memory

* Paging units form equivalent of MMU
* Pages sizes can be 4 KB or 4 MB

CSE 30341 — Operating System Principles 56

2/29/16

28

Logical to Physical in IA-32

physical
memory

CSE 30341 — Operating System Principles

logical linear physical
PU address | segmentation | address | paging | address |
i unit | unit]
page number page offset
P1 p: d
10 10 12

57

Intel IA-32 Segmentation

logical addressl selector ‘

offset

descriptor table

segment descriptor

CSE 30341 — Operating System Principles

32-bit linear address

58

2/29/16

29

Intel I1A-32 Paging

(logical address)

__Page directory i page table i offset !
31 22 21 l 12 11 1 0
page 4-KB
table ™ page
page
directory
CR3 —» 4-MB
register page
__Page directory i offset |
31 2221 [¢]
CSE 30341 — Operating System Principles 59

Intel x86-64

- Current generation Intel x86 architecture
« 64 bits is ginormous (> 16 exabytes)

« In practice only implement 48 bit addressing
- Page sizes of 4 KB, 2 MB, 1 GB
- Four levels of paging hierarchy

page map page directory page page
| unused | level4 | pointertable | directory | table | offset |
63 48 47 39 38 3029 2120 1211 0
CSE 30341 — Operating System Principles 60

2/29/16

30

ARM Architecture

Dominant mobile platform chip (Apple iOS and
Google Android devices for example)
|

32 bits.

Modern, energy efficient, 32-bit CPU ‘

inner page

offset

4 KB and 16 KB pages ‘ outer page
+ 1MB and 16 MB pages (termed sections)

« One-level paging for sections, two-level for smaller
pages
Two levels of TLBs
~ Outer level has two micro TLBs (one data, one W

4-KB

16-KB
page

instruction)

~ Inner is single main TLB

- Firstinner is checked, on miss outers are
checked, and on miss page table walk
performed by CPU

CSE 30341 — Operating System Principles

1-MB
or
16-MB
section

61

2/29/16

31

