
DEBUG LOGS

Debug Logs

 Used for debugging and providing
information about intermediate state

 Trace application flow

 Intermediate variable values

 iOS

 NSLog

 Android

 LogCat

NSLog

 FoundationKit function for printing debug
statements to console

void NSLog (NSString *format, …);

 May use c-style format specifiers or Core
Foundation object specifiers

NSLog (@”ClassA : x = %d”, x);

NSLog (@”ClassB : str = %s”, “mystring”);

NSLog (@”ClassC : myObject = %@”, myObject);

 Be sure specifier matches the arguments
int i = 123;

NSLog (@”i = %@”, i); // Produces error

NSLog format specifiers

%@

%d, %i

%u

%f

%x, %X

%p

%e

%s

%S

%c

%C

%lld

%llu

%Lf

 Object

 signed int

 unsigned int

 float/double

 hexadecimal int

 pointer

 float/double (in scientific notation)

 C string (bytes)

 C string (unichar)

 character

 unichar

 long long

 unsigned long long

 long double

LogCat

 Android logging system mechanism used to view system
debug output

 Can be used to view stack trace of emulator errors
 Useful for locating line of code were error initiated

 LogCat is viewable in realtime in Debug or DDMS view of
Eclipse

 Common logging methods
 v - verbose
 d - debug
 i - information
 w - warning
 e - error

 Usage example
 Log.i(“MyActivity”, “MyClass.memberfunction – info message”);

IOS PROCESSES AND
THREADS

Processes

 From developer’s perspective, only one
process is active

 iOS 4 places closed applications in suspend
state to maintain them in memory

 Small number of accepted background
processes allowed in iOS 4

Background tasks

 3 types supported

 Audio

 Location

 Voip

 Other extensions provided for

 Task completion

 beginBackgroundTaskWithExpirationHandler:

 endBackgroundTask:

 Local notifications

Concurrency

 Operation objects
 Define operations which can be pushed onto a queue

for asynchronous execution

 Block objects and Grand Central Dispatch (GCD)
 Supported in iOS 4
 Define operation blocks inline

 Long operations should not be performed on
main thread
 Blocks UI

 Operations on UI should ONLY be performed on
main thread

NSOperationQueue

 Concurrent dispatch queue for Cocoa

 Default execution order is first-in, first-out,
but may incorporate other factors

 Task dependencies

 Execution priorities

 May define multiple queues in your
application

 Automatically retains operations, then
releases on completion

NSOperationQueue

 Set concurrency level using
setMaxConcurrentOperationCount:

 Can achieve locks or synchronization using serial
queues or operation object dependencies

 To use a queue, allocate, then add operations

NSOperationQueue* aQueue = [[NSOperationQueue alloc] init];

[aQueue addOperation:anOp];

. . .

[aQueue release];

NSOperation

 Objective-C operation object which
encapsulates work to perform and data and
data needed to perform it

 Generate key-value observing notifications

 Useful for monitoring progress of task

 An abstract class that needs to be subclassed

 NSInvocationOperation

 If you already have method that performs needed
task

NSInvocationOperation

@implementation MyCustomClass

- (NSOperation *) taskWithData:(id)data {

 NSInvocationOperation* theOp = [[[NSInvocationOperation alloc]
 initWithTarget:self

 selector:@selector(myTaskMethod:)
 object:data] autorelease];

 return theOp;

}

// This is the method that does the actual work of the task.

- (void)myTaskMethod:(id)data {

 // Perform the task.

}

@end

NSOperation

 Custom subclass

 Required implementations

 Custom init

 main

 Additional implementations

 Custom methods to be called in main

 Accessor methods for data values

 dealloc

NSOperation
@interface MyOperation : NSOperation {

 id myData;

}

-(id)initWithData:(id)data;

@end

@implementation MyOperation

- (id)initWithData:(id)data {

 if (self = [super init])

 myData = [data retain];

 return self;

}

- (void)dealloc {

 [myData release];

 [super dealloc];

}

-(void)main {

 // Do some work on myData and report the results.

}

@end

Modifying UI

 To make modifications to UI from operations
on another thread, use UIView method

performSelectorOnMainThread:withObject:waitUntilDone:

Task dependencies

 Set in NSOperation after creation, but before
queuing

 Dependency not limited to same queue

 Add dependency using
(void) addDependency:(NSOperation *) operation

 Avoid circular dependencies!

 Can create custom dependency by overriding
isReady method

Execution priority

 Priority of operation is within scope of queue

 By default priority is normal

 Modify priority using
- (void) setQueuePriority:(NSOperationQueuePriority) priority

 Valid values
 NSOperationQueuePriorityVeryLow

 NSOperationQueuePriorityLow

 NSOperationQueuePriorityNormal

 NSOperationQueuePriorityHigh

 NSOperationQueuePriorityVeryHigh

KVO compliance

 NSOperation is key-value observing compliant
for following key paths
 isCancelled

 isConcurrent

 isFinished

 isReady

 dependencies

 queuePriority

 completionBlock

 If overriding more than main in NSOperation,
need to maintain KVO compliance

Dispatch queues

 Grand Central Dispatch queues manage
queues of task to be operated

 All dispatch queues are first-in, first-out

 Predefined types

 Serial

 Supports multiple self-defined queues

 Concurrent

 3 global predefined queues of differing priority

 Main dispatch queue

Blocks

 A self contained unit of work

 Typically defined within another function, so
it can access variables within that scope

 May be assigned to a variable or passed as an
argument

typedef double (^my_op_t)(double op);

my_op_t square;

square = ^(double operand) {

return operand * operand;

}

Queues

 Getting the main queue (UI queue)
dispatch_queue_t dispatch_get_main_queue()

 Creating a serial queue
dispatch_queue_t dispatch_queue_create (
 const char *label, NULL)

 Releasing a serial queue
void dispatch_release(dispatch_queue_t)

 Won’t release queue until it is empty

Queues

 Adding blocks to a queue
void dispatch_async(dispatch_queue_t queue,

 dispatch_block_t block)

 Block may be defined inline when adding to
queue

Grand central dispatch
example
- (void) viewWillAppear:(BOOL)animated {

NSString *url = photo.url;

dispatch_queue_t downloadQ = dispatch_queue_create

 (“picdownload”, NULL);

dispatch_async(downloadQ, ^{

NSData *imgData = [ImgFetcher getDataForUrl:url];

dispatch_async(dispatch_get_main_queue(), ^{

UIImage *img = [UIImage imageWithData:imgData];

self.imgView.image = img;

});

});

dispatch_release(downloadQ);

}

