
DEBUG LOGS

Debug Logs

 Used for debugging and providing
information about intermediate state

 Trace application flow

 Intermediate variable values

 iOS

 NSLog

 Android

 LogCat

NSLog

 FoundationKit function for printing debug
statements to console

void NSLog (NSString *format, …);

 May use c-style format specifiers or Core
Foundation object specifiers

NSLog (@”ClassA : x = %d”, x);

NSLog (@”ClassB : str = %s”, “mystring”);

NSLog (@”ClassC : myObject = %@”, myObject);

 Be sure specifier matches the arguments
int i = 123;

NSLog (@”i = %@”, i); // Produces error

NSLog format specifiers

%@

%d, %i

%u

%f

%x, %X

%p

%e

%s

%S

%c

%C

%lld

%llu

%Lf

 Object

 signed int

 unsigned int

 float/double

 hexadecimal int

 pointer

 float/double (in scientific notation)

 C string (bytes)

 C string (unichar)

 character

 unichar

 long long

 unsigned long long

 long double

LogCat

 Android logging system mechanism used to view system
debug output

 Can be used to view stack trace of emulator errors
 Useful for locating line of code were error initiated

 LogCat is viewable in realtime in Debug or DDMS view of
Eclipse

 Common logging methods
 v - verbose
 d - debug
 i - information
 w - warning
 e - error

 Usage example
 Log.i(“MyActivity”, “MyClass.memberfunction – info message”);

IOS PROCESSES AND
THREADS

Processes

 From developer’s perspective, only one
process is active

 iOS 4 places closed applications in suspend
state to maintain them in memory

 Small number of accepted background
processes allowed in iOS 4

Background tasks

 3 types supported

 Audio

 Location

 Voip

 Other extensions provided for

 Task completion

 beginBackgroundTaskWithExpirationHandler:

 endBackgroundTask:

 Local notifications

Concurrency

 Operation objects
 Define operations which can be pushed onto a queue

for asynchronous execution

 Block objects and Grand Central Dispatch (GCD)
 Supported in iOS 4
 Define operation blocks inline

 Long operations should not be performed on
main thread
 Blocks UI

 Operations on UI should ONLY be performed on
main thread

NSOperationQueue

 Concurrent dispatch queue for Cocoa

 Default execution order is first-in, first-out,
but may incorporate other factors

 Task dependencies

 Execution priorities

 May define multiple queues in your
application

 Automatically retains operations, then
releases on completion

NSOperationQueue

 Set concurrency level using
setMaxConcurrentOperationCount:

 Can achieve locks or synchronization using serial
queues or operation object dependencies

 To use a queue, allocate, then add operations

NSOperationQueue* aQueue = [[NSOperationQueue alloc] init];

[aQueue addOperation:anOp];

. . .

[aQueue release];

NSOperation

 Objective-C operation object which
encapsulates work to perform and data and
data needed to perform it

 Generate key-value observing notifications

 Useful for monitoring progress of task

 An abstract class that needs to be subclassed

 NSInvocationOperation

 If you already have method that performs needed
task

NSInvocationOperation

@implementation MyCustomClass

- (NSOperation *) taskWithData:(id)data {

 NSInvocationOperation* theOp = [[[NSInvocationOperation alloc]
 initWithTarget:self

 selector:@selector(myTaskMethod:)
 object:data] autorelease];

 return theOp;

}

// This is the method that does the actual work of the task.

- (void)myTaskMethod:(id)data {

 // Perform the task.

}

@end

NSOperation

 Custom subclass

 Required implementations

 Custom init

 main

 Additional implementations

 Custom methods to be called in main

 Accessor methods for data values

 dealloc

NSOperation
@interface MyOperation : NSOperation {

 id myData;

}

-(id)initWithData:(id)data;

@end

@implementation MyOperation

- (id)initWithData:(id)data {

 if (self = [super init])

 myData = [data retain];

 return self;

}

- (void)dealloc {

 [myData release];

 [super dealloc];

}

-(void)main {

 // Do some work on myData and report the results.

}

@end

Modifying UI

 To make modifications to UI from operations
on another thread, use UIView method

performSelectorOnMainThread:withObject:waitUntilDone:

Task dependencies

 Set in NSOperation after creation, but before
queuing

 Dependency not limited to same queue

 Add dependency using
(void) addDependency:(NSOperation *) operation

 Avoid circular dependencies!

 Can create custom dependency by overriding
isReady method

Execution priority

 Priority of operation is within scope of queue

 By default priority is normal

 Modify priority using
- (void) setQueuePriority:(NSOperationQueuePriority) priority

 Valid values
 NSOperationQueuePriorityVeryLow

 NSOperationQueuePriorityLow

 NSOperationQueuePriorityNormal

 NSOperationQueuePriorityHigh

 NSOperationQueuePriorityVeryHigh

KVO compliance

 NSOperation is key-value observing compliant
for following key paths
 isCancelled

 isConcurrent

 isFinished

 isReady

 dependencies

 queuePriority

 completionBlock

 If overriding more than main in NSOperation,
need to maintain KVO compliance

Dispatch queues

 Grand Central Dispatch queues manage
queues of task to be operated

 All dispatch queues are first-in, first-out

 Predefined types

 Serial

 Supports multiple self-defined queues

 Concurrent

 3 global predefined queues of differing priority

 Main dispatch queue

Blocks

 A self contained unit of work

 Typically defined within another function, so
it can access variables within that scope

 May be assigned to a variable or passed as an
argument

typedef double (^my_op_t)(double op);

my_op_t square;

square = ^(double operand) {

return operand * operand;

}

Queues

 Getting the main queue (UI queue)
dispatch_queue_t dispatch_get_main_queue()

 Creating a serial queue
dispatch_queue_t dispatch_queue_create (
 const char *label, NULL)

 Releasing a serial queue
void dispatch_release(dispatch_queue_t)

 Won’t release queue until it is empty

Queues

 Adding blocks to a queue
void dispatch_async(dispatch_queue_t queue,

 dispatch_block_t block)

 Block may be defined inline when adding to
queue

Grand central dispatch
example
- (void) viewWillAppear:(BOOL)animated {

NSString *url = photo.url;

dispatch_queue_t downloadQ = dispatch_queue_create

 (“picdownload”, NULL);

dispatch_async(downloadQ, ^{

NSData *imgData = [ImgFetcher getDataForUrl:url];

dispatch_async(dispatch_get_main_queue(), ^{

UIImage *img = [UIImage imageWithData:imgData];

self.imgView.image = img;

});

});

dispatch_release(downloadQ);

}

