
PROCESSES AND THREADS

Threads, and processes, and
tasks! Oh, my!
 Process – linux process

 Usually one process per application

 Thread – linux thread

 May be multiple per process

 May encompass multiple application components

 Tasks

 Android stack of activities

 May cross process boundaries

 One task stack for each “job”

Task stack

 Stack of activities rooted at initial activity

 Multiple tasks may exists at once

 Background task stacks

 Back button pops activity from stack

Processes

 When an application component is launched,
if no other component is running, a new
process with single thread is started

 Separate process can be specified for
component(s) using android:process attribute
in manifest file

 Processes may be killed due to low memory

 importance hierarchy from process lifecycle

Threads

 When application is launched, creates “main” thread
 UI thread

 Long operations should go in extra threads
 Background / worker threads

 Single-threaded model for UI
 2 rules

 Do not block UI thread
 Do not access the android UI toolkit from outside the UI thread

 UI toolkit not thread-safe, must always be manipulated in UI
thread

 Several ways to access UI thread from extra threads
 Activity.runOnUiThread(Runnable)
 View.post(Runnable)
 View.postDelayed(Runnable, long)
 Handler

Threads

 Threads and Runnables created using
standard Java syntax

 Example new thread creation
n e w T h r e a d (n e w R u n n a b l e () {

p u b l i c v o i d r u n () {

/ / i m p l e m e n t a t i o n . . .

}

}) . s t a r t () ;

UI helper thread example

public void onClick (View v) {
 new Thread(new Runnable() {
 public void run() {
 final Bitmap bitmap = loadImageFromNetwork
 ("http://exmpl.com/img.png");

 mImageView.post (new Runnable() {
 public void run() {
 mImageView.setImageBitmap(bitmap);
 }
 });
 }
 }).start();
}

Looper

 Android class for providing message queue
for threads

 UI thread has a Looper created for it implicity

 Can connect to this queue and handle messages
by declaring new handler in main thread

 HandlerThread

 Handy class for starting a new thread that has a
looper

Handler

 Handles messages and runnables passed to a
thread’s message queue

 Connects to thread’s Looper

 Thread safe

 Extend Handler and override
handleMessage(Message msg)

Message

 Members

 public int what

 public int arg1

 public int arg2

 public object obj

 public Messenger replyTo

 Typically constructed using Message.obtain()

 returns message object from global pool to avoid
allocating new objects

Handler

 Example implementation

class MyHandler extends Handler {
 @Override
 public void handleMessage (Message msg) {
 switch (msg.what) {
 case 1:
 // do something;
 break;
 case 2:
 // do something else;
 break;
 default:
 super.handleMessage(msg);
 }
 }
}

Looper/Handler example

AsyncTask

 Simplifies creation of long-running tasks that need to
communicate with the UI

 Must be subclassed

 Instance must be created on UI thread

 Instance can only be executed once

 Automatically invokes
 doInBackground() on worker thread
 onPreExecute(), onPostExecute(), onProgressUpdate() on UI

thread
 Return value of doInBackground() passed to onPostExecute()

 publishProgress() can be called in doInBackground() to
execute onProgressUpdate()
 Useful for progress bar updates

AsyncTask example

public void onClick(View v) {
 new DownloadImageTask().execute("http://exmpl.com/img.png");
}

private class DownloadImageTask extends AsyncTask<String, Void,

 Bitmap> {

 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }

 protected void onPostExecute(Bitmap result) {
 mImageView.setImageBitmap(result);
 }
}

Interprocess communication

 Remote procedure calls can be accomplished
two ways
 Android interface definition language (AIDL)

 Messenger service

 AIDL provides custom defined interface
 Requires other applications to have AIDL files

 Messenger service has standard format but
less flexible

 Binder of AIDL or Messenger interface can be
returned to clients in onBind()

AIDL

 Defines an interface for interprocess
communication

 Needs to be thread-safe
 Calls from local process are handled in caller thread
 Calls from remote process are handled from thread

pool

 Calls to interface are direct function calls
(synchronous), unless oneway keyword specified
(asynchronous)

 Interface define in .aidl file
 Android SDK tools automatically generate IBinder

interface

Example .aidl file

// IRemoteService.aidl
package com.example.android;

// Declare any non-default types here with import statements

/** Example service interface */
interface IRemoteService {

 /** Request the process ID of this service */
 int getPid();

 /** Demonstrates some basic types that you can use as
 * parameters and return values in AIDL.
 */
 void basicTypes(int anInt, long aLong, boolean aBoolean,
 float aFloat, double aDouble, String aString);
}

Messenger

 Pointer to Handler

 Allows handler to be called from other processes

 Can be used for interprocess message passing

 To expose handler
 Initialize Messenger with Handler to share

Messenger mMessenger = new Messenger (new
MyHandler());

 To connect to remote handler
 Initialize Messenger with IBinder of remote interface

Messenger mMessenger = new Messenger(serviceIbinder);

IPC example

Thread safe

 Interprocess communication with an IBinder
performed using a pool of threads in IBinder
process

 ContentProvider methods called from a pool
of threads in content provider’s process

 query()

 insert()

 delete()

 update()

LogCat

 Android logging system mechanism used to view system
debug output

 Can be used to view stack trace of emulator errors
 Useful for locating line of code were error initiated

 LogCat viewable in realtime in Debug or DDMS view of
Eclipse

 Common logging methods
 v - verbose
 d - debug
 i - information
 w - warning
 e - error

 Usage example
 Log.i(“MyActivity”, “MyClass.memberfunction – error message”);

