
Run-Time Services for Hybrid CPU/FPGA Systems on Chip

Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed Komp, Ron Sass, Fabrice Baijot, Jim Stevens
Information and Telecommunication Technology Center - University of Kansas

2335 Irving Hill Road, Lawrence, KS
{jagron,peckw,eanderso,dandrews,komp,rsass,bricefab,jstevens}@ittc.ku.edu

Abstract

Modern FPGA devices, which include (multiple) pro-
cessor core(s) as diffused IP on the silicon die, provide
an excellent platform for developing custom multiprocessor
systems-on-programmable chip (MPSoPC) architectures.
As researchers are investigating new methods for migrating
portions of applications into custom hardware circuits, it is
also critical to develop new run-time service frameworks to
support these capabilities. Hthreads (HybridThreads) is a
multithreaded RTOS kernel for hybrid FPGA/CPU systems
designed to meet this new growing need. A key capabil-
ity of hthreads is the migration of thread management, syn-
chronization primitives, and run-time scheduling services
for both hardware and software threads into hardware. This
paper describes the hthreads scheduler, a key component for
controlling both software-resident threads (SW threads) and
threads implemented in programmable logic (HW threads).
Run-time analysis shows that the hthreads scheduler mod-
ule helps in reducing unwanted system overhead and jit-
ter when compared to historical software schedulers, while
fielding scheduling requests from both hardware and soft-
ware threads in parallel with application execution. Run
time analysis shows the scheduler achieves constant time
scheduling for up to 256 active threads with a total of
128 different priority levels, while using uniform APIs for
threads requesting OS services from either side of the hard-
ware/software boundary.

1 Introduction

1.1 Uniformity of Services in a Hybrid
System

FPGAs provide a ”blank” slate of computational com-
ponents. Standard interfaces and services have not yet been
established [9, 27], thus forcing hybrid system designers to
literally build systems from ”scratch”. Conversely, abstract
interfaces and services have been established in the world

of software, and these have been standardized in program-
ming models implemented in part with middleware libraries
and operating systems (OSes). Of critical importance is
the operating system, which forms the basis for common
services to the user in a convenient and efficient manner
[21]. Pragmatically, operating systems work as the inter-
mediary to manage the lower-level platform-specific details
of the system hardware. An OS provides services that en-
force how programs, or more abstractly, computations, ex-
ecute and communicate. Real time operating systems typ-
ically provide the task abstractions, in the form of threads
or processes. Traditionally, tasks are defined in software,
and are able to execute, usually on a set of CPUs, in a
pseudo-concurrent fashion. Additionally, operating systems
are typically implemented solely in software, which means
that the OS requires CPU-execution time in order to provide
services to tasks executing in the system.

Hybrid CPU/FPGA systems provide the silicon struc-
ture to support tasks in either hardware or software. To
exploit this structure OS services must be uniformly acces-
sible to both hardware and software-based computations. If
an OS is solely implemented in software, management of
hardware-based computations will require CPU time to ex-
ecute, therefore interrupting the software tasks to field OS
calls from hardware tasks. This is a very inefficient method
of organizing OS services that should be uniformly acces-
sible by all tasks in a hybrid system. In order to provide
a uniform service interface for both software and hardware-
resident tasks the OS could be resident within a central com-
putational component (i.e. CPU). This implies that an ad-
ditional CPU could be used as a system OS ”coprocessor”;
a CPU on which the OS runs and all OS service calls are
directed towards it. This approach does indeed provide a
uniform service interface for both software and hardware-
based tasks, however the allocation of a microprocessor
used solely for OS service execution is quite wasteful in
terms of hardware utilization and does not allow for full ex-
ploitation of parallelism within OS services. Alternatively,
a specialized set of hardware based OS services can be de-
veloped. This approach allows the ISA of the OS copro-

CPU
Software Interface

Software
Thread

Software
Thread

Software
Thread

Hardware
Interface
Hardware

Thread

Hardware
Interface
Hardware

Thread

Thread
Manager

Thread
Scheduler

Shared
MemoryCBISConditional

VariablesMutexes

System Bus

Figure 1. hthread System Block Diagram

cessor to be tailored to perfectly suit OS services, thus rais-
ing the abstraction-level of the hardware itself to that of the
level of an OS. Additionally, what if each component of
the OS is implemented as a separate hardware component
within an FPGA; allowing each portion of the OS to ex-
ecute in parallel with application execution? This would
provide uniform OS services to both software and hardware
resident tasks, however the concurrent execution of differ-
ent OS services allows for a large reduction in system over-
head and jitter without the need of a general-purpose pro-
cessor to perform OS services. The parallel nature of FP-
GAs also allows for the exploitation of both coarse-grained
(task-level) and fine-grained (instruction-level) parallelism.
Therefore the operations within each OS component can
be parallelized, improving overall system performance by
reducing the overhead and jitter normally incurred by ex-
ecuting these OS services on a sequential CPU [16]. For
instance, bit-shifting and boolean arithmetic are highly se-
quential operations when executed on a CPU, but are highly
parallel operations that often require little or no intermedi-
ate steps (states) when executing within an FPGA.

1.2 hthreads: A Distributed Run-Time
Kernel

Figure 1 shows the hthreads run-time system compo-
nents implemented in hardware. Hthreads migrates a
Thread Manager, Scheduler, Mutex Manager, and a new
CPU Bypass Interrupt Scheduler (CBIS) into the reconfig-
urable fabric on an FPGA. Migrating these services into
hardware brings significant performance benefits to soft-
ware threads through more efficient invocation and process-
ing mechanisms [17, 2]. First, invocation mechanisms for
accessing the system services are no longer based on ineffi-
cient traversal of hierarchical software protocol stacks, but
instead are achieved through lightweight, atomic load and
store operations. Second, speculative and variable length
execution paths performed within key system services, such
as the scheduler, are eliminated.

As an operational example, the mutex unlock() oper-
ation illustrated in Figure 2 shows the processing steps
the hthreads system performs to release a mutex, make a
scheduling decision, and resume the execution of a thread.
In a traditional operating system, steps A through E are

CPU
Software Interface

Software
Thread

Software
Thread

HWTI
ID: 6

HWTI
ID: 8

Hardware
Thread

Thread
Manager

Scheduler Shared
Memory

CBISConditional
Variables

Mutexes

System Bus

ID: 3 ID: 4 ID: 7
Software
Thread

M2: Queue
8
7

Ready
4

Hardware
Thread

A F

D

C

B

A: Hardware thread 6 (ID = 6) unlocks mutex M2 by calling
hthread_mutex_unlock(M2), which sends signal to Mutex Manager.
B: Mutex Manager inspects M2's queue and decides ID 8 will own mutex next.
C: Mutex Manager sends add_thread(8) to Thread Manager.
D: Thread Manager gives ID 8 to Scheduler to add to Ready to Run queue.
E: Scheduler knows ID 8 is a hardware thread, does not add ID 8 to queue.
F: Scheduler instead sends RUN command to ID 8's HWTI.
G: Hardware thread 8 resumes execution, now owner of mutex M2.
(Note: CPU remains uninterrupted by the hardware thread wakeup process)

E

G

Figure 2. hthread Mutex Unlock Sequence

performed completely in software executing on the CPU.
These steps would require a context switch from the appli-
cation thread to the system services, and must be performed
before the scheduler considers if a new scheduling decision
is required based on the queuing of a blocked thread. In
hthreads, steps A through G are performed in hardware,
allowing application threads to continue executing on the
CPU without interruption. For systems with both hardware
and software threads, migrating this processing off the CPU
is critical, as significant overhead and jitter can be intro-
duced if the CPU must be preempted in order to process
OS requests for hardware threads being unblocked. In con-
trast, [23, 24] reports a multithreaded capability that sup-
ports the creation and control of both hardware and soft-
ware threads through Linux running on the CPU. This ap-
proach was taken to allow hardware threads to access data
through Linux’s existing virtual memory address space. Al-
though convenient, this approach requires additional com-
plexity within the hardware thread to maintain virtual ad-
dress translation tables, and requires the use of external in-
terrupts in order to invoke the memory manager, running
on the CPU, for page swapping; thus demonstrating how
unwanted overhead and jitter can be introduced when OS
processing for both software and hardware threads must be
executed on a shared computational resource such as a CPU.

2 Achieving Precise Scheduler Services

It has been well understood that system overhead and jit-
ter can be dramatically reduced by careful redesign and mi-
gration of portions of the RTOS into concurrent co-designed
hardware modules [22, 13, 18, 8]. Migrating these services
off the CPU also helps in eliminating the hidden overhead
of context switch times associated with entering and exiting
the RTOS. Perhaps the biggest benefit of this approach is
the ability to seriously reduce the overhead and jitter asso-
ciated with processing variable entry points into the RTOS

2

scheduler. The key reason for development of our sched-
uler module is to service all scheduling operations from
within the FPGA. This allows the CPU and other compu-
tational resources, i.e custom hardware components, to use
the scheduler module’s services without any burden of ex-
ecuting traditional scheduling operations themselves. The
hthreads system [3, 4, 15, 5] allows for all computations,
whether implemented in hardware or software, to use uni-
form, high-level APIs provided by the HW/SW co-designed
components resident within the fabric of the FPGA. This
development methodology has also been used in the con-
text of the hthreads project for other RTOS services includ-
ing semaphores, thread management, and hardware thread
control mechanisms.

There are both obvious short-term performance advan-
tages, but more importantly subtle significant long-term ad-
vantages that can be gained by migrating an operating sys-
tem scheduler into hardware. First, migration of function-
ality from software to hardware should result in decreased
execution times associated with the targeted software-based
scheduling methods [1, 18, 13]. Iterative control loops, used
for searching through priority lists, can be decomposed into
combinational circuits controlled by finite state machines
(FSMs) that perform parallel sorting in a fixed number of
clock cycles. Additionally, the parallel sorting hardware can
run concurrently with an application program resulting in a
significant reduction in overhead and jitter. The literature
reports many examples of a hardware/software co-designed
scheduler providing lower overhead and jitter than that of
a traditional software-based scheduler. As a good example,
[8] reports a hardware scheduler implementation that incurs
zero overhead for a hardware-based scheduler that runs in
parallel with the currently running application. Although
an important result, these short-term advantages only mini-
mize the overhead and jitter associated with the scheduling
method itself and do not dramatically affect the precision
of the entire system overall. In fact, existing software tech-
niques for systems that require precise scheduling times can
minimize the overhead and jitter by calculating overhead
delay times and presetting the next event timer to expire a
set number of timer ticks before the next event should be
scheduled.

A second subtle but more significant advantage a
hardware-based scheduler offers is the ability to modify
the semantics of traditional asynchronous invocation mech-
anisms that introduce the majority of system jitter. By cre-
ating a hardware component that manages the scheduling
of threads, the asynchronous invocations can be directed to
the scheduler and not the CPU. From a system perspec-
tive, this has the positive effect of resolving the relative
inconsistencies that exist between the scheduling relation-
ships of the application threads and the ability of external
interrupt requests from superseding and perturbing this re-

lationship. Resolving these inconsistencies can be achieved
by translating interrupt requests into thread scheduling re-
quests directed towards the hardware-based scheduler. The
external interrupt device is simply viewed as requesting a
scheduling decision for a device handler “thread” relative
to all other threads. These device handler “threads” often
do the work of interrupt service routines (ISRs), so these
”threads” are often referred to as interrupt service threads
(ISTs) [10]. This use of ISTs allows the scheduler to con-
sider the complete state of the system in determining when
an interrupt request should be handled because ISTs and
user-level threads can be viewed as falling in the same class
of priorities.

This approach also results in a changing of the order of
the traditional scheduler invocation mechanism itself, con-
sisting of a timer interrupt expiring, followed by the execu-
tion of the scheduler. Under this new approach, the timer
interrupt request is simply an event, similar to the unblock-
ing of a semaphore, that is directed to the scheduler and
factored into the scheduling decision. Due to the fact that
the scheduling decision has been made (or is being made in
cases of higher frequency timer interrupts) before the timer
interrupt expires, a software scheduler interrupt routine then
reduces down to a simple context switching routine with the
next thread to be scheduled already known. More far reach-
ing is this approaches alteration of the semantics of current
software-based operating systems that must allow external
devices to interrupt an application program in order to deter-
mine the necessity of servicing the request. By eliminating
the need to perform a context switch for every possible in-
terrupt request, the jitter associated with non-deterministic
invocations of an ISR to determine if an interrupt request
should be processed or simply marked as pending and be
serviced later is eliminated. These capabilities can only oc-
cur if the scheduler is truly independent of the CPU and
the interrupt interfaces are transformed into scheduling re-
quests. Additionally, traditional interrupt semantics treat in-
terrupt requests as threads with a priority level of infinity,
while the hthreads approach transforms interrupt requests
into ISTs that have priority levels falling within the ranges
of typical user-level threads. Thus allowing the system to
take into account the importance of interrupt requests in a
framework that treats all threads in the system as equals.

This new approach should provide a significant increase
in scheduling precision, and reduction of overall system
jitter over current software-based methods that must rely
on interrupts. Most real-time operating systems, such as
RTLinux [28], attempt to minimize the jitter introduced by
asynchronous requests by pre-processing external requests
within a small, fast interrupt service routine that determines
if the request should be immediately handled, or can sim-
ply be marked as pending for future service. While this
approach does reduce jitter, it is still based on the seman-

3

tics of allowing asynchronous invocations to interrupt the
CPU, and incurring the overhead of a context switch to an
interrupt service routine.

3 Related Works

The migration of scheduling functionality into hardware
is not a a new technique in the world of real-time and em-
bedded systems as shown in [1, 12, 19]. All of these ap-
proaches use a high-performance systolic array structure to
implement their ready-to-run queues in a similar fashion as
the structure described in [14]. Systolic arrays are highly
scalable through the process of cell concatenation due to
the uniform structure of their cells. However each cell in
the array, as shown in figure 3, is composed of storage regis-
ters, comparators, multiplexers, and control logic; which re-
quires a non-trivial amount of logic resources to implement.
Systolic arrays enable parallelized sorting of entries in a pri-
ority queue, however this comes in the form of high cost in
terms of logic resources within an FPGA. In a system such
as hthreads, operating system components as well as user-
defined hardware threads must share the logic resources of
an FPGA, therefore conservation of logic resources within
each operating system component (such as the scheduler)
becomes an issue. Logic resources within operating system
components must be minimized in order to maximize the
amount of logic resources available for user-defined hard-
ware threads. Although systolic array cells are fast and al-
low parallel accesses, they take up a considerable amount
of space within an FPGA. This is evident in Georgia Tech’s
hardware-based scheduler [12], where a systolic array im-
plementation of a ready-to-run queue structure requires 421
logic elements (slices) and 564 registers for a queue size of
only 16 entries. In the hthreads system, on chip BRAMs are
used to store data structures, such as the scheduler module’s
ready-to-run queue, in order to conserve logic resources
(slices, registers, etc.). The implementation of the sched-
uler for the hthreads system, described in sections 4 and
5 only requires 1,455 logic slices and 973 flip-flops for a
queue of size 256. BRAMs allows for excellent scalabil-
ity of queue size with minimum effects on logic resource
usage. Although more BRAMs might be used to increase
the size of the ready-to-run queue, only slightly more logic
resources are used for decode logic and pointer registers.
Additionally, BRAM access times are almost on par with
that of registers; only requiring 1 clock cycle for writes and
2 clock cycles for reads.

The hthreads scheduler differs from other existing
hardware-based schedulers in that it must be able to per-
form scheduling operations for both software and hardware
threads. This requires the hthreads scheduler to incorporate
new properties that distinguish between hardware and soft-
ware threads, as well as different mechanisms that handle

Identifier + SortValue

Comparator
Control
Logic

Multiplexer

Data from
right cell

Data from
left cell

New DataComparison results Comparison results
from right cell

Figure 3. Structure of Typical Systolic Cell

the scheduling of each type of thread.
Additionally, the entire hthreads system is built around

APIs that are fully compatible with the POSIX thread
(pthread) standard [6]. Both Malardalen University’s Real-
Time Unit (RTU) and Georgia Tech’s configurable hard-
ware scheduler [12] use their own custom APIs for interact-
ing with OS services. Using POSIX thread compatible APIs
has enabled the hthreads system to be extremely accessible
to those familiar with the POSIX thread standard. Addi-
tionally, simple library wrappers can be used to port appli-
cations written for use on the hthreads system to a POSIX
thread application capable of running on a desktop com-
puter equipped with POSIX thread libraries. This allows for
rapid prototypes of hthreads applications to be debugged on
a typical desktop machine, and then later ported for use on
the hthreads architecture at no cost to the system program-
mer.

4 Scheduler Module Design

The Hybrid Threads system requires the capability to
manage and schedule both SW and HW threads, therefore
the thread manager and scheduler modules must be aware
of all threads, whether they are CPU-bound or not. By ex-
amining the policy of thread management and scheduling
it was determined that thread management operations are
identical for both SW and HW threads, however, schedul-
ing operations do have different meanings for SW and HW
threads. Thread management deals with allocation of thread
identifiers as well as operations that deal with manipulation
of thread status, therefore thread management does not have
any concern for where a thread is running. Scheduling op-
erations deal with calculating scheduling decisions and dis-
patching threads to run, so scheduling operations must be
cognizant of whether a thread is to be run in hardware or
software. This allows for the thread manager to treat all

4

threads in the same way, and it will be the job of the sched-
uler to keep track of which threads are resident in HW or
SW. Furthermore, this makes it possible for all the thread
management and scheduling APIs to remain uniform for
both software and hardware threads.

The differences in scheduling operations for SW and
HW threads comes about because a HW thread is an in-
dependent execution unit: a stand-alone computation that
does not require scheduling. Thus, a HW thread can be
in either of two states: running or not-running (stopped or
blocked). Because a HW thread has dedicated computa-
tional resources, it is never needs to be queued. On the
other hand, a SW thread is a computation, but it requires
some sort of computational unit (i.e. a CPU) to execute it.
This means that a SW thread can be ready to begin run-
ning, but has not ran yet, so it can be in either of three
states: running, ready-to-run (queued), and not ready-to-run
(blocked). A HW thread physically exists, it takes up phys-
ical space within the FPGA, it has a base address, and its
execution perfectly represents the program that it was de-
rived from. A SW thread is merely a set of instructions that
take up room in memory somewhere, and this group of in-
structions are scheduled to be run on a computational unit.
When that SW thread is chosen to be run, the instructions
are gathered (fetched) and are then executed by a compu-
tational unit, thus making the computational unit emulate
the behavior of the program that the SW thread was derived
from.

The traditional method for scheduling a thread, whether
it is a HW or SW thread, is the add thread command. An
add thread command for a SW thread will add the thread
to the ready-to-run queue and change the thread’s status to
queued. The SW thread’s location in the queue is deter-
mined by its priority level which is encoded in its schedul-
ing parameter. An add thread command for a HW thread
will do a ”pseudo-add” which sends the HW thread a start
command to begin its execution. A HW thread is not queued
during an add thread command because the HW thread it-
self is not a shared resource. The HW thread’s execution
is started when the scheduler module writes a run message
to the address of its command register which is encoded in
the thread’s scheduling parameter. Because the scheduling
parameter is being used to store the address of the com-
mand register for HW threads, it is required to be a 32-
bit value. HW and SW threads are thus distinguished by
their scheduling parameters: a scheduling parameter whose
value is between 0 and 127 denotes a SW thread with the
parameter being it’s priority level; a scheduling parameter
greater than 127 denotes a HW thread with the parameter
being the address of it’s command register. This method of
distinguishing between SW and HW threads allows for all
thread management and scheduling APIs to remain uniform
regardless of the type of thread because the only difference

in system operation for the two types of threads is the re-
sult of scheduling a thread by invocation of the add thread
command.

Both the thread manager (TM) and the scheduler are
implemented in the programmable logic of an FPGA. The
system-level architecture is shown in figure 4. Both com-
ponents communicate directly and are attached to a periph-
eral bus (IBM CoreConnect Bus) that allows the CPU to
communicate with the modules. The purpose of the TM
is to control all thread management operations, while the
scheduler controls all thread scheduling operations. The
dedicated hardware interface between the scheduler and the
TM consists of a total of eight control and data signals
as well as access to a read-only interface (B-port) of the
TM’s Block RAM (BRAM). Four of these interface sig-
nals are writable by the TM and readable by the scheduler
(TM2SCH), and are used for signaling the scheduler to per-
form certain operations on behalf of the TM. The remaining
four signals are writable by the scheduler and readable by
the TM (SCH2TM), and are used for return values as well
as synchronization with the TM. The B-Port interface to the
TM’s BRAM allows the scheduler to query thread manage-
ment information in order to perform error-checking on cer-
tain scheduling operations.

The TM2SCH current cpu tid data signal contains
the identifier of the thread currently running on the CPU.
The TM2SCH opcode signal contains the encoded form of
the operation that the scheduler is to perform upon the TM’s
request. The TM2SCH data signal contains any necessary
parameters needed for an operation requested by the TM.
The TM2SCH request control signal is used to signify
that the TM has a pending operation request for the sched-
uler.

The SCH2TM busy control signal is used to signify
that the scheduler is currently busy performing an op-
eration and cannot accept any more incoming opera-
tions at this time. The SCH2TM data signal is used
to carry return value information back to the TM. The
SCH2TM next cpu tid data signal contains the iden-
tifier of the thread that will be scheduled to run next
on the CPU. The SCH2TM next tid valid control
signal is used to signify whether the data found on
SCH2TM next cpu tid is valid or not.

The eight control and data signals implement a hand-
shake protocol used to reliably coordinate communication
between the scheduler and the TM. The scheduler mod-
ule has two main categories of operations: bus commands
(BUScom), and TM commands (TMcom). The TM com-
mands are only issued from the TM and are requested via
the dedicated hardware interface. The bus commands can
be issued from any device that is a bus-master, and are re-
quested via the bus command register interface. The com-
mand set of the scheduler module can be seen in table 1.

5

Table 1. Scheduler Command Set
Type Name Actions
TMcom Enqueue Schedules a thread
TMcom Dequeue Removes a thread from the ready-to-run queue
TMcom Is Queued Checks to see if a thread is queued
TMcom Is Empty Checks to see if the ready-to-run queue is empty
BUScom Get Entry Returns a thread’s table attribute entry
BUScom Set Idle Thread Sets the identifier of the idle thread
BUScom Get Sched Param Returns the scheduling parameter of a thread
BUScom Check Sched Param Error-checks a thread’s scheduling parameter
BUScom Set Sched Param Sets the scheduling parameter of a thread

Thread Manager Thread Scheduler

current thread reg

next thread reg

current thread reg

next thread reg

current cpu thread id

next cpu thread id

State Table B-Port Interface

opcode

data in
request

busy

data out

next id valid

THREAD_DATA

PRIORITY_DATA

PARAM_DATA

Priority
Encoder

system bus

bu
s

in
te

rfa
ce

bu
s

in
te

rfa
ce

Figure 4. Scheduler Block Diagram

The ready-to-run queue within the scheduler was first
implemented as a single linked-list kept in FIFO order [2].
This implementation requires that the entire queue be tra-
versed in order to find the highest priority thread in the
system, thus making the execution times of scheduler op-
erations vary directly with the number of active threads.
The most recent implementation uses a partitioned ready-
to-run queue with a parallel priority encoder in order to
provide constant time scheduler operations without adding
significant complexity to the scheduler module. This imple-
mentation uses three Block RAMs (BRAMs) to implement
the ready-to-run queue: the Priority Data BRAM,
the Thread Data BRAM, and the Param Data BRAM.
The Priority Data BRAM is indexed by priority value, and
contains the head and tail pointers for the queue for each
individual priority level. The Thread Data BRAM is in-
dexed by thread ID, and contains the thread attribute infor-
mation described in figure 5. The Param Data BRAM
is used to store the 32-bit scheduling parameter which is
an overloaded field used to distinguish between software or
hardware resident threads. Additionally, a parallel priority
encoder calculates the highest priority level in the system
using a 128-bit register field that represents which priority
levels have active (queued) threads associated with them.
The parallel priority encoder calculates the highest prior-
ity in the system only when a change occurs in its 128-
bit input register and can do so in a quick and predictable
four clock cycles. The partitioned ready-to-run queue along
with the priority encoder eliminate the need to traverse
the scheduler’s data structures because individual priority
queues can be located using the Priority Data BRAM
and individual thread information can be located using the
Thread Data and Param Data BRAMs.

With this data organization, enqueue operations work by
first determining whether a thread is resident in HW or SW
by examining its scheduling parameter. If it is a hardware-
resident thread (HW thread) then a RUN command is sent
to the hardware thread and no ready-to-run queue manip-
ulation is needed. If it is a software-resident thread (SW
thread) then an enqueue operation results in adding a thread

6

Thread_Data BRAM
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Q? N0 N1 N2 N3 N4 N5 N6 N7 L0 L1 L2 L3 L4 L5 L6 P0 P1 P2 P3 P4 P5 P6 P7 - - - - - - - -

Field Width Purpose
 Q? (1-bit) 1 = Queued, 0 = Not Queued.
 N0:N7 (8-bit) Ready-to-run queue next pointer
 L0:L6 (7-bit) Scheduling priority-level
 P0:P7 (8-bit) Ready-to-run queue previous pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
H0 H1 H2 H3 H4 H5 H6 H7 T0 T1 T2 T3 T4 T5 T6 T7 - - - - - - - - - - - - - - - -

Priority_Data BRAM

Field Width Purpose
 H0:H7 (8-bit) Priority-queue head pointer
 T0:T7 (8-bit) Priority-queue tail pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31

Param_Data BRAM

Field Width Purpose
 s0:s31 (32-bit) Scheduling parameter

Figure 5. Scheduler BRAM Data Structures

to the tail of the respective priority levels queue, and then
adjusting the scheduling decision if needed based on the pri-
ority levels of the currently running thread and the thread
that is scheduled next to run. The semantics of the enqueue
operation can be seen in figure 6. Dequeue operations work
by removing a thread from the head of the highest prior-
ity levels queue, and then immediately calculating the next
scheduling decision. The semantics of the dequeue opera-
tion can be seen in figure 7. A new scheduling decision is
calculated by looking up the head pointer of the highest pri-
ority queue from the Priority Data BRAM using the output
of the priority encoder and placing the head pointer’s thread
identifier into the SCH2TM next cpu tid register. From
figure 6 and figure 7, one can see that the partitioned ready-
to-run queue along with the priority encoder allow for ex-
tremely simple enqueue and dequeue semantics that are able
to operate in constant time regardless of queue length.

Timing results, which can be seen in table 2, show that
the entire dequeue operation completes before the time it
takes to complete a context switch, which validates the use
of the partitioned queues in FIFO order. If a priority queue
(sorted) was used in this situation, then the enqueue opera-
tion would take a longer amount of time because it would
involve a sorted insert (BRAM traversal). A slow enqueue
operation is detrimental to system performance, because en-
queue operations are often performed by user-programmed
threads which wait for the return status of the enqueue op-
eration. A priority queue implementation would also take
additional logic to constantly keep the list in sorted order, so
it was decided to design the scheduler module to use a data
organization that did not require sorting or BRAM traversal.

5 Results

The scheduler module was implemented on a Xilinx [26]
ML310 development board which contains a Xilinx Virtex-
II Pro 30 FPGA. Synthesis of the scheduler module yields

Enqueue Begin
TID = Thread_ID to EnQ
t_entry = Thread_Data[TID]
s_entry = Param_Data[TID]

Lookup_Priority_Entry
de-assert next_thread_valid
PRI = t_entry.priority
t_entry.Q = 1
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_tail = p_entry.tail
old_tail_entry = Thread_Data[old_tail]
empty_flag = encoder_input[PRI]

Add_To_Empty_Q
encoder_input[PRI] = 1
p_entry.head = TID
p_entry.tail = TID

Add_To_Non_Empty_Q
t_entry.prev = old_tail
p_entry.tail = TID
old_tail_entry.next = TID

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_tail] = old_tail_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
c_entry = Thread_Data[current_thread_id]

Preemption_Check
next_thread_id = h_entry.head
assert next_thread_valid
if (encoder_output < c_entry.priority)
 then raise interrupt

empty_flag = 0 empty_flag = 1

Check_Thread_Type
sched_param = s_entry.param
is_hw = PRI = (sched_param > 127)

is_hw = 0 is_hw = 1

Start_HW_Thread
IP2BusAddr = sched_param
IP2BusData = hw_thread_start_cmd
IP2BusWriteReq = 1

Figure 6. State Diagram for Enqueue Opera-
tion

Dequeue_Begin
TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid

Lookup_Priority_Entry
PRI = t_entry.priority
t_entry.Q = 0
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_head = p_entry.head
old_entry = Thread_Data[old_head]
equal_flag = (p_entry.head == p_entry.tail)

Set_Q_To_Empty
encoder_input[PRI] = 0

Update_Q_Head_Ptr
p_entry.head = old_entry.next

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_head] = old_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
exist_flag = (encoder_input != 0)

equal_flag = 1 equal_flag = 0

Next_Thread_From_R2RQ
next_thread_id = h_entry.head
assert next_thread_valid

Next_Thread_Not_From_R2RQ
idle_valid = idle_thread_valid

exist_flag = 1

exist_flag = 0

idle_valid = 1 idle_valid = 0

Next_Thread_Idle
next_thread_id = idle_thread_id
assert next_thread_valid

No_Next_Thread
keep next_thread_valid de-
asserted

Figure 7. State Diagram for Dequeue Opera-
tion

7

Table 2. ModelSim Timing Results of
Scheduling Operations

Operation Time (clock cycles)
Enqueue(SWthread) 28
Enqueue(HWthread) 20 + (1 Bus Transaction)
Dequeue 24
Get Entry 10
Is Queued 10
Is Empty 10
Set Idle Thread 10
Get Sched Param 10
Check Sched Param 10
Set Sched Param(NotQueued) 10
Set Sched Param(Queued) 50

the following FPGA resource statistics: 1,455 out of 13,696
slices, 973 out of 27,392 slice flip-flops, 2,425 out of 27,392
4-input LUTs, and 3 out of 136 BRAMs. The module has a
maximum operating frequency of 119.6 MHz, which easily
meets our goal of being able to support a clock frequency
within the FPGA of 100 MHz.

The primary scheduler operations have been simulated
with ModelSim to characterize their execution times. The
worst-case timing results are shown in table 2. These re-
sults were verified by comparison against the expected re-
sults based on the number of states and transitions in the
FSMs that implement the operations. From table 2, one
can see that all of the scheduling operations execute in 500
ns (50 clock cycles) or less. This is extremely fast, espe-
cially when considering that the FPGA and the scheduler
module are only being clocked at 100 MHz. These mea-
surements do not vary with the number of active (queued)
threads, which makes for jitter-free scheduling operations,
and thus more predictable and precise scheduling of threads
within the RTOS.

To test the scheduler in action, it has been synthesized
and integrated into the hthreads OS. The first performance
measurement taken of the scheduler is end-to-end schedul-
ing delay. End-to-end scheduling delay, or scheduling la-
tency, in the system is defined as the time delay between
when a timer interrupt fires to when the context switch to
a new thread is about to complete [25, 7]. The end-to-end
scheduling delay is measured using a hardware timer that
begins clocking immediately after a timer interrupt goes
off and would stop timing as soon as the context switch is
complete. The hardware counter measures this delay in an
non-invasive way by monitoring the interrupt lines attached
to the CPU. This allows for clock-cycle accurate measure-
ments to be made without bias. Figure 8 shows a histogram
of the end-to-end scheduling delay measurements for our

Figure 8. Histogram of Integrated End-To-End
Scheduling Delay (250 Active SW Threads)

system with 250 active threads, where each thread is in an
infinite loop. The shaded region of figure 8 as well as figure
9 highlight the data range of the measurement from min-
imum to maximum delay. The end-to-end scheduling de-
lay over a course of approximately 40,000 events is 1.9 µs
with 250 active threads, with approximately 1.4 µs of jitter.
Where the jitter is defined as being the difference between
the maximum and mean delays. The results of both the av-
erage end-to-end scheduling delay and jitter are quite low
when compared to the 1.3 ms scheduling delay of Linux
[25] and the 40 µs scheduling delay of Malardalen Univer-
sity’s RTU [20]. When compared to a commercial RTOS
such as RTLinux, end-to-end scheduling delays are typi-
cally found to be in the 2 µs range, and with worst case
delays in the range of 13 to 100 µs, depending on processor
speed [7]. Additionally, further tests have shown that the jit-
ter in end-to-end scheduling delay of the hthreads schedul-
ing system is solely caused by cache misses during context
switching, as well as jitter and delay in the time it takes for
the CPU to respond to the interrupt and jump into its ISR.
When the hthreads system is run with data cache turned off
the jitter in end-to-end scheduling delay is reduced to the
nanosecond range.

The second performance measurement taken of the sys-
tem is interrupt delay. Interrupt delay is the time delay in
our system from when an interrupt signal goes off to when
the CPU actually enters its ISR. The interrupt delay is also
measured using a hardware module that would begin timing
immediately after a timer interrupt goes off and would stop
timing when the CPU sent a signal to the hardware timer
from its ISR. Figure 9 shows a histogram of the interrupt
delay in our system with 250 active threads, where each
thread is infinitely looping. This measurement shows that
average interrupt delay over a course of 2,500,000 events
is approximately 0.79 µs with approximately 0.73 µs of jit-
ter. One can see that the variable interrupt delay makes up
a significant portion of the end-to-end scheduling delay and
jitter. The interrupt delay is relatively constant, and its jitter
is primarily caused by variable-length atomic instructions
that prevent the interrupt from being acknowledged imme-
diately (CPU dependent).

During a context switch, the CPU does not interact with
the scheduler module, which gives the scheduler module

8

Figure 9. Histogram of Raw Interrupt Delay
(250 Active SW Threads)

the perfect opportunity to calculate the next scheduling de-
cision. This scheduling decision is calculated in parallel
with the application execution on the CPU, thus eliminating
much of the processing delays normally incurred by cal-
culating a new scheduling decision. Also, the scheduling
decision being calculated is for the next scheduling event
so that when a timer interrupt goes off, the next thread to
run has already been calculated. This pre-calculation of the
scheduling decision allows the system to react very quickly
to scheduling events because when a scheduling event oc-
curs, the OS simply reads the SCH2TM next cpu tid
register and performs a context switch, and then during this
context switch, the SCH2TM next cpu tid register is re-
freshed with the thread that should run at the next schedul-
ing event by the hardware scheduler module.

6 Conclusion

In this paper we have presented the design of our sched-
uler module implemented in programmable logic. This de-
sign takes advantage of current FPGA technology to pro-
vide important operating system services that operate con-
currently with the processor core(s). The scheduler module
supports FIFO, round-robin, and priority-based scheduling
algorithms. The system currently supports up to 256 active
threads, with up to 128 different priority levels. The sched-
uler module provides constant time scheduling operations
that execute in under 50 clock cycles (500 ns) or less at the
base hardware level. From the system level, the hardware
scheduler module provides very fast scheduling operations
with an end-to-end scheduling delay of 1.9 µs with 1.4 µs
of jitter with 250 active threads running on a Xilinx [26]
Virtex-II Pro FPGA. The integrated system level tests have
shown that the migration of scheduling services into the fab-
ric of the FPGA have drastically reduced the amount of sys-
tem overhead and jitter related to the scheduling of threads,
thus allowing for more precise and predictable scheduling
services. Migration of scheduling and management services
has also allowed for uniform operating system services to
be provided for both SW and HW threads. This effectively
raises the abstraction level of the hardware into the domain
of threads and OS services. SW and HW computations
have been encapsulated as threads which allows the com-
putations to be treated as ”equals” as they are now able to

communicate and synchronize with all threads in the system
through the use of uniform, high-level APIs commonly seen
in the world of multithreaded software programming. Over-
all, this work has enabled uniform operating system sup-
port for both software and hardware based computations.
Additionally, system overhead and jitter have been greatly
reduced by designing and implementing a scheduling mod-
ule in hardware whose operations all have fixed execution-
times.

Immediate future work is now focused on creating a
more flexible organization that will allow the user to recon-
figure the scheduler module to support an arbitrary num-
ber of threads and priority levels, as well as user-defined
scheduling algorithms. We are also working on optimizing
the scheduler module in terms of FPGA resource utilization.
The goal of this work is to try to shrink the size of the hard-
ware implementation of the scheduler module as much as
possible in order to free up additional FPGA resources for
use by additional hardware-based OS modules as well as
user-defined hardware threads. Additionally, we have been
testing a modular design flow for partial reconfiguration in
order to dynamically alter the functionality of the IP cores
(OS cores and HW threads) resident on the OPB bus.

The capability of migrating traditional operating system
services into hardware allows system designers to improve
concurrency, and reduce system overhead and jitter, which
has the possibility of making real-time and embedded sys-
tems more precise and accurate. Complete systems can
be built by integrating these HW/SW co-designed modules
into an FPGA so as to provide fast and precise operating
systems services to the embedded domain while still ad-
hering to standard programming models and APIs. Ad-
ditionally, the final redesign of the scheduler enables full
OS support across the hardware/software boundary. Allow-
ing all computations in the system, whether implemented in
software or within the FPGA, to communicate and synchro-
nize through the use of high-level APIs compatible with the
POSIX thread standard. The APIs used in the hthreads sys-
tem provide accessibility to the services and computations
within the FPGA at level of abstraction familiar to that of
software programmers without the need for such program-
mers to knowledge of hardware design principles.

New research projects have spawned from the develop-
ment methodologies of the hthreads project [29], which fur-
thers the future impacts of the project even more. More de-
tailed descriptions of the hthreads OS can be found in [11].

Acknowledgment

The work in this article is partially sponsored by Na-
tional Science Foundation EHS contract CCR-0311599.
The opinions expressed are those of the authors and not nec-
essarily those of the foundation.

9

References

[1] J. Adomat, J. Furuns, L. Lindh, and J. Starner. Real-Time
Kernel in Hardware RTU: A Step Towards Deterministic and
High-Performance Real-Time Systems. In Proceedings of
the 8th Euromicro Workshop on Real-Time Systems, 1996.

[2] J. Agron, D. Andrews, M. Finley, E. Komp, and W. Peck.
FPGA Implementation of a Priority Scheduler Module. In
Proceedings of the 25th IEEE International Real-Time Sys-
tems Symposium, Works in Progress Session (RTSS WIP),
Lisbon, Portugal, December 2004.

[3] D. Andrews, D. Niehaus, and P. Ashenden. Program-
ming Models for Hybrid FPGA/CPU Computational Com-
ponents. IEEE Computer, 37(1):118–120, 2004.

[4] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck,
M. Frisbie, J. Ortiz, E. Komp, and P. Ashenden. Pro-
gramming Models for Hybrid FPGA/CPU Computational
Components: A Missing Link. IEEE Micro, 24(4):42–53,
July/August 2004.

[5] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp,
M. Finley, and R. Sass. hThreads: A Hardware/Software
Co-Designed Multithreaded RTOS Kernel. In Proceed-
ings of the 10th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Catania,
Sicily, September 2005.

[6] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

[7] FSMLabs. RTLinux Performance. FSMLabs Data Sheets
on RTLinux. http://www.fsmlabs.com/literature.html.

[8] V. J. M. III and D. M. Blough. A Hardware-Software Real-
Time Operating System Framework for SOCs. IEEE Design
& Test, 19(6):44–51, Nov/Dec 2002.

[9] A. A. Jerraya and W. Wolf. Hardware/Software Interface
Co-Design for Embedded Systems, February 2005.

[10] J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer,
U. Brinkschulte, and C. Krakowski. Real-time Schedul-
ing on Multithreaded Processors. In Proceedings of the 7th
International Conference on Real-Time Computing Systems
and Applications (RTCSA), pages 155–159, Cheju Island,
South Korea, 2000.

[11] KU HybridThreads. Project Wiki.
http://wiki.ittc.ku.edu/hybridthread/Main Page. Last
accessed February 6, 2007.

[12] P. Kuacharoen, M. Shalan, and V. M. III. A Configurable
Hardware Scheduler for Real-Time Systems. In Proceed-
ings of the International Conference on Engineering of Re-
configurable Systems and Algorithms, pages 96–101, 2003.

[13] J. Lee, V. Mooney, K. Instrom, A. Daleby, T. Klevin, and
L. Lindh. A Comparison of the RTU Hardware RTOS with
a Hardware/Software RTOS. In Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC),
pages 683–688, Kitaskyushu International Conference Cen-
ter, Japan, 2003.

[14] S. W. Moon, J. Rexford, and K. G. Shin. Scalable Hard-
ware Priority Queue Architectures for High-Speed Packet
Switches. IEEE Transactions on Computers, 49(11):1215–
1227, 2000.

[15] D. Niehaus and D. Andrews. Using the Multi-
Threaded Computation Model as a Unifying Framework
for Hardware-Software Co-Design and Implementation. In
Proceedings of the 9th Workshop on Object-oriented Real-
time Dependable Systems (WORDS), pages 318–326, Isle of
Capri, Italy, 2003.

[16] D. A. Patterson and J. L. Hennessy. Computer architecture:
A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1990.

[17] W. Peck, J. Agron, D. Andrews, M. Finley, and E. Komp.
Hardware/Software Co-Design of Operating Systems for
Thread Management and Scheduling. In Proceedings of
the 25th IEEE International Real-Time Systems Symposium,
Works in Progress Session (RTSS WIP), Lisbon, Portugal,
December 2004.

[18] Realfast. Realfast. http://www.realfast.se/. Last accessed
February 6, 2007.

[19] S. Saez, J. Vila, A. Crespo, and A. Garcia. A Hardware
Scheduler for Complex Real-Time Systems.

[20] T. Samuelsson, M. Akerholm, P. Nygren, J. Starner, and
L. Lindh. A Comparison of Multiprocessor RTOS Imple-
mented in Hardware and Software. In Proceedings of the
15th Euromicro Workshop on Real-Time Systems, 2003.

[21] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating Sys-
tem Concepts, 6th Edition. John Wiley & Sons, Inc., New
York, NY, USA, 2001.

[22] J. A. Stankovic and K. Ramamritham. The spring kernel:
A new paradigm for real-time systems. IEEE Software,
8(3):62–72, 1991.

[23] M. Vuletic, L. Possi, and P. Ienne. Virtual Memory Win-
dow for Application-Specifc Reconfigurable Coprocessors.
In Proceeding of the 41st Annual Conference on Design Au-
tomation, ACM Press, pages 948–953, 2004.

[24] M. Vuletic, L. Pozzi, and P. Ienne. Seamless Hardware
Software Integration in Reconfigurable Computing Systems.
IEEE Design and Test of Computers, pages 102–113, 2005.

[25] C. Williams. Linux Scheduler Latency. Red Hat Inc. Techni-
cal Paper. http://www.linuxdevices.com/files/article027/rh-
rtpaper.pdf.

[26] Xilinx. Programmable logic devices.
http://www.xilinx.com/. Last accessed February 6,
2007.

[27] T.-Y. Yen and W. Wolf. Communication synthesis for dis-
tributed embedded systems, 1995.

[28] V. Yodaiken. The RTLinux Manifesto. In Proceedings of
The 5th Linux Expo, Raleigh, NC, 1999.

[29] B. Zhou, W. Qiu, and C. Peng. An Operating System
Framework for Reconfigurable Systems. In The 5th Interna-
tional Conference on Computer and Information Technology
(CIT), pages 788–792, 2005.

10

