
The Evolution of Real-Time Linux

Sven-Thorsten Dietrich
MontaVista Software, Inc

1237 East Arques Avenue, Sunnyvale, CA, USA

sven@mvista.com

Daniel Walker
MontaVista Software, Inc

1237 East Arques Avenue, Sunnyvale, CA, USA

dwalker@mvista.com

Abstract

In October, 2004 the authors of this paper announced a Real-Time Linux Kernel prototype on the
Linux Kernel mailing list. The Real-Time Linux prototype introduced preemptible locking into the Linux
kernel, and allowed task preemption to occur while tasks were executing within critical sections, resulting
in a dramatic improvement in the Real-Time response of the Linux kernel.

Ingo Molnar reviewed the preemptible locking prototype and quickly implemented a preemptible kernel
on top of his existing Voluntary Preemption project. This effort gave rise to the Real-Time preemption
patch, which is currently available for download:

http://people.redhat.com/~mingo/realtime-preempt/

This paper examines the foundations of the Real-Time Linux kernel, focusing in detail on thread-
context interrupt handling, replacement of non-preemptible locking with preemptible mutex-based locks,
priority-inheritance, virtualization of interrupt-disable, integration of high-resolution timers, as well as
current development on user-space extensions of the kernel real-time mutex.

1 Introduction: Kernel Real-
Time Support

The processing of time-critical tasks, depends upon
the capacity of the system to respond to an event,
within a known and bounded interval of time.

Our objective is to enable the Linux 2.6 kernel to
be usable for high-performance multi-media applica-
tions and for applications requiring very fast, reliable
task-level control functions.

The AV industry is building HDTV related tech-
nology on Linux, and high-end desktop systems are
used by audio enthusiasts for real-time effects.

Cell phones, PDAs and MP3 players are converg-
ing into highly integrated devices requiring a large
number of threads. These threads support a vast
array of communications protocols (IP, Bluetooth,
802.11, GSM, CDMA, etc.). Especially the cellular-
based protocols require highly deadline-sensitive op-
erations to work reliably.

Linux is being increasingly utilized in traditional

real-time control environments including radar pro-
cessing, factory automation systems, ”in the loop”
process control systems, medical and instrumenta-
tion systems, and automotive control systems. Many
times these systems have task level response require-
ments in the 10’s to hundreds of microsecond ranges,
which is a level of guaranteed task response not
achievable with current 2.6 Linux technology.

1.1 Precedent Work

There are several micro-kernel solutions available,
which achieve the required performance. The use of
these systems invariably requires a kernel patch, but
there are two separate kernel environments, creat-
ing more overall system, and application-design com-
plexity.

Significant precedent work has also been per-
formed on the 2.4 Linux kernel under the auspices
of the Kansas University RealTime (KURT) Linux
Project, directed by Prof. Douglas Niehaus.”

1

http://people.redhat.com/~mingo/realtime-preempt/

http://www.cs.wustl.edu/~niehaus/kurt.html

This project has recently been renamed KUSP
(Kansas University System Programming), and is
currently focusing on research pertaining to:

• modular hierarchical scheduling

• high accurate time synchronization for dis-
tributed systems

• modular and configurable instrumentation

http://kusp.ittc.ku.edu

2 Kernel Preemption Back-
ground

Task preemption has been available in all versions of
Linux. Linux kernels have continuously become more
sophisticated in their flexibility to preempt tasks ex-
ecuting within the kernel.

The response time of the Linux kernel has gener-
ally improved over time, while continuously becom-
ing more versatile, and finding a very broad range of
application hosts.

With the 2.4 Kernel Series, Linux became fully
capable of meeting high-performance, multi-media
streaming requirements at both the UI level, as well
as on the infrastructure, or network carrier level.

See Table 1 for a summary of the general pre-
emption capabilities of the Linux Kernel over time.

2.1 Early Linux Kernels (Linux 1.x
and Linux 2.0.x / 2.2.x)

In early kernels, tasks could not be preempted once
they started executing code in the kernel or in a
driver. Scheduling could take place after the task
voluntarily suspended itself in the kernel, or preemp-
tion could occur when the task exited the Kernel.

2.2 SMP Kernels (Linux 2.x)

The Linux 2.x kernel series introduced SMP support.
The earliest SMP Linux design was problematic,

because CPUs could sit idle for long periods of time,
while task on another CPU executed in the kernel.

Gradual improvements in locking technology,
and especially decoupling of locks led towards contin-
uous improvement, moving away from a single lock-
ing bottleneck (the Big-Kernel-Lock), towards data-
specific, distributed locking of distinct critical sec-
tions.

Multiple threads could execute in the kernel as
long as they did not attempt to access the same
shared data at the same time. If multiple tasks con-
tended for the same critical section, the task arriving
later would have to wait.

The final SMP design in Late 2.4 Kernels used
decoupled critical sections throughout the kernel,
and dramatically improved the throughput of SMP
systems.

The global Big-Kernel lock, still remained as a
non-preemptible monolith, and continues to be asso-
ciated with significant sources of preemption latency.

2.3 Preemptible Kernel: (Linux 2.4 +
Preemption Patch)

In 2001, MontaVista began to enhance the evolv-
ing SMP locking paradigm to allow in-Kernel-
preemption on uniprocessor systems.

The innovated preemption concept recognized
that tasks could be preempted anywhere in the Ker-
nel, as long as they were not executing in a critical
section bounded by SMP locking.

The conceptual logic assumes, that multiple con-
current tasks could already execute in the kernel on
SMP systems, and therefore, multiple tasks could
also execute in the Kernel at the same time, on a
uniprocessor system.

The preemption enhancements significantly in-
creased the preemptible code surface within the Ker-
nel, and improved the response time dramatically.

Massive worst case latency scenarios had been
eliminated.

During its prime, the late Linux 2.4 Kernel out-
performed any other major general purpose operat-
ing system in multimedia application reliability.

2.4 Preemptible Linux 2.6 Kernel

The advent of the 2.6 kernel series brought to
mainstream many improvements and features that
evolved from the requirements of embedded systems,
including a new scheduler and in-kernel preemption.

Expectations on the real-time performance of the
Linux 2.6 kernel were running high, based on the ad-
vancements in scheduler technology, as well as pre-
emption enhancements.

The new scheduler performed nicely, but re-
sponse time in the early 2.6 kernel continued to be
impacted by preemption delays encountered when
running tasks accessed shared system data inside a
critical section.

Efforts have been underway for years, to reduce
the number and duration of critical sections in the
Linux kernel, as well as to reduce the nesting and
locking durations of individual critical sections.

2

http://www.cs.wustl.edu/~niehaus/kurt.html
http://kusp.ittc.ku.edu

Kernel Version Preemption Capability

Early Linux Kernel 1.x No In-Kernel preemption
SMP Linux Kernel 2.x No In-Kernel preemption

BKL SMP Lock
SMP Linux Kernel 2.2 2.4 No In-Kernel preemption

Spin-locked Critical Sections
Preemptible Linux Kernel 2.4 Preemptible

Non-Preemptible Spinlock Sections
Current Linux Kernel 2.6.x Preemptible

Non-Preemptible Spin-lock Sections
Preemptible BKL (since 2.6.11)

RT-Preempt Linux Kernel 2.6.x Preemptible Kernel Critical Sections
Preemptible IRQ Subsystem
Mutex Locks with Priority Inheritance

Table 1: Preemption Capabilities by Kernel Version

Various forms of Instrumentation have been de-
veloped to identify the longest critical sections. That
instrumentation generally applied to the Linux 2.6
kernel, and recent additional work was performed by
Ingo Molnar, to develop more sophisticated latency-
analysis instrumentation (also known as Latency
tracing).

Initial measurements indicated that the preemp-
tion performance of the 2.6 kernel lagged the perfor-
mance of the 2.4 kernel.

For audio processing, the 2.4 kernel series also
outperformed some revisions of the early 2.6 Linux
kernel series.

2.5 The Audio Community and Pre-
emption Requirements

The Linux Audio community has always had strin-
gent requirements for Linux task response time, due
to the ever-advancing performance of audio applica-
tions, which are operating on streaming digital data,
in real-time.

One of the most significant efforts by the au-
dio community, to communicate the shortcomings of
the Linux kernel to Linus, and the kernel developer
community, was authored by Paul Barton-Davis and
Benno Senoner.

This communication was titled ”a joint letter on
low latency and Linux” [2]

The document was signed by a large number of
audio users and developers, who were attempting to
raised the issue of Linux Kernel preemption latency
to a new level.

”Their request was based on their desire
to have Linux function well with audio, music
and MIDI. Senoner produced some benchmark-
ing software that demonstrated that the 2.2 ker-
nel (and later the 2.4 kernel) had worst-case

preemption latencies on the order of 100ms (
http://www.gardena.net/benno/linux/audio/).
Latencies of this magnitude are unacceptable for au-
dio applications. Conventional wisdom seems to say
that latencies on the order of no more than a few
milliseconds are required.” [3]

”Two efforts emerged that produced patched
kernels that provided quite reasonable preemption
latencies. Ingo Molnar (of Red Hat) and An-
drew Morton (then of The University of Wollon-
gong) both produced patch sets that provided pre-
emption within particularly long sections in the
kernel. You can find Ingo Molnar’s patches at
http://people.redhat.com/mingo/lowlatency-patches/ ,

and you can find Andrew Morton’s work at

http://www.zipworld.com.au/~akpm/linux/schedlat.html”

[3]

The audio community continues to be active in
its interactions with the Kernel developer commu-
nity, and has been instrumental in supporting the
Real-Time preemption technology discussed in this
paper.

The following section examines the Kernel con-
structs contributing to preemption latency, in order
to establish a foundation for discussion of the Real-
Time preemption enhancements.

3 Concurrency in the Unipro-

cessor Kernel

This section examines critical section management
and task preemption control in the Linux 2.6 kernel.

3.1 Critical Sections

During the Kernel’s operation, shared Kernel data
objects, as well as buses and other hardware reg-

3

http://www.gardena.net/benno/linux/audio/
http://people.redhat.com/mingo/lowlatency-patches/
http://www.zipworld.com.au/~akpm/linux/schedlat.html

isters, are subject to concurrent read-modify-write
access by multiple threads and interrupt handlers.

Shared data that is operated upon by multiple
independent tasks, must be protected from context
switches such that read-modify-update operations
are not overlapped

In order to guarantee data integrity, transaction-
alized accesses are imposed on all code operating on
Kernel data objects, by means of critical sections.

A critical section estabishes a section of pro-
tected code, wherein only one task is allowed to op-
erate.

Any process executing within the boundaries of
a critical section, must exit the critical section before
another process is allowed to enter.

The critical sections boundaries serialize concur-
rent accesses to shared objects and therefore, guar-
antee that shared data and hardware register opera-
tions remain in a stable state at all times.

There are two basic classes of critical sections in
the kernel:

1. Critical Sections protecting threads from con-
current access by other threads

2. Critical Sections protecting threads from con-
current access by interrupts

3.2 Critical Section Management

Critical section management in a Linux uniproces-
sor environment is the most basic and serves as the
entry point into the discussion. In the UP environ-
ment, only a single thread of execution exists on the
CPU. The running (current) thread executes until it
relinquises the CPU voluntarily, or is interrupted by
a processor exception, such as an interrupt.

3.3 Protection from other Threads

The simplest form of critical section available in the
Linux kernel is known as a preemption-disabled sec-
tion of code. Concurrency protection from other
threads (but not interrupts) is achieved by suppress-
ing task switches while a thread is executing inside
a critical section. Task switches are suppressed by
the preempt disable function. This Kernel design-
feature guarantees, that a thread can transition the
critical section before another thread is allowed to
execute. The requirements of the critical section
are fulfilled, since entry into a simple critical section
using the preempt disable() primitive, establishes a
non-preemptible thread execution state.

#define preempt_disable() \

do { \

inc_preempt_count(); \

barrier(); \

} while (0)

Each Linux task has a preemption counter, pre-
empt count, in its task control structure. The
preempt disable() function increments the threads
preempt count variable. The preempt count vari-
able is allocated on a per-thread basis in the asm-
<arch>/thread info.h header file, but the value of
preempt count exerts a global effect upon the sys-
tem:

If preempt count is non-zero, task switches are
prohibited on the CPU. preempt enable() decre-
ments the preempt count variable, via the pre-
empt enable no resched() call.

#define preempt_enable() \

do { \

preempt_enable_no_resched(); \

preempt_check_resched(); \

} while (0)

Preemption may only tke place only if pre-
empt count is equal to zero.

3.3.1 Nesting of Critical Sections

It is possible for critical sections to be nested in-
side the kernel. In this case, each successive critical
section entered by the executing thread, is associ-
ated with another call to preempt disable(). The
preempt count variable tracks the nesting of criti-
cal sections, and must be decremented by a call to
preempt enable(), when a critical section is unlocked.
Only after the last critical section has been unlocked,
does the value of preempt count reach 0, indicat-
ing that the task may be preempted. In order to
achieve proper accounting of critical section nesting,
each call to preempt enable(), must thus be balanced
by a subsequent call to preempt disable().

3.4 Protection from Interrupt Han-
dlers

Critical sections demarcated by preempt disable()
and preempt enable() pairs run with interrupts en-
abled. If an interrupt occurs while a thread is exe-
cuting in a critical section, exception processing pro-
ceeds immediately, and the thread of execution is
always returned to the running thread. The current
threads preempt count is sampled upon return from
the exception, and that state determines, whether
the return from exception passes through the sched-
uler, or continues with the interrupted thread. The
code for handling interrupts while preemption is dis-
abled, is typically found in assembly code in the in-
terrupt dispatch routines located in the architecture-
specific entry.S file.

4

If a data object is shared with an interrupt
handler, it thus does not suffice to disable pre-
emption, because the processors hardware exception
mechanism does not understand the meaning of the
thread’s preempt count variable.

Concurrency protection for data shared with in-
terrupt handlers, is managed by disabling interrupts
using the Kernels local irq disable() function.

Before a thread accesses data shared with an in-
terrupt handler, interrupts are disabled, and they
are not re-enabled until the data update has been
completed. The interrupt-disable protects data from
concurrent access by the interrupt handler, after the
executing thread has entered the critical section.

3.5 Protection from Threads and In-
terrupt Handlers

If the shared data object is accessed by multiple
threads as well as interrupt handler(s), it is neces-
sary to disable preemption, as well as interrupts, to
satisfy the protection requirements of the data object
within the Kernel.

3.6 Critical Section Independence

The preempt-disable and interrupt-disable mecha-
nisms are sufficient for basic critical section man-
agement in a UP environment, where only a single,
active thread of execution exists.

It is important to observe, that the uniprocessor
Linux kernel, manages critical sections, by categori-
cally disabling task switches throughout the system.

When a task locks a critical section, preemption
is disabled, and no other task can run. Preventing
other tasks from running also prevents other tasks
from accessing critical sections.

When a locked critical section is unlocked, the
thread previously executing in the critical section
may be preempted, if its preempt count is equal to
0.

The Linux Kernel is designed around the as-
sumption that the scheduler will not be called to
reschedule a thread, while the threads preempt count
is non-zero.

Consequently, all suspended (preempted)
threads must have a preempt count of 0 stored. The
per-thread allocation of the preempt count variable,
is therefore not necessary on the uniprocessor.

The per-thread preempt count exists to provide
a consistent implementation environment between
uniprocessor and SMP systems.

4 Concurrency in the SMP
Kernel

Concurrency management in the SMP Linux Kernel
is significantly more complex, than in the uniproces-
sor Kernel.

4.1 Critical Sections

In an SMP environment, is not sufficient to disable
preemption and interrupts, to protect data shared
between CPUs.

Two, or more independent tasks, executing on
different CPUs, could enter the same critical section
at the same time, having no knowledge, whether pre-
emption and interrupts are disabled on another CPU.

To protect shared data in the Kernel from con-
current access by multiple CPUs, it is therefore nec-
essary, to physically allocate shared locks that con-
trol access to critical sections.

4.2 Critical Section Management

In the SMP Kernel, the data structures which pro-
tect access to critical sections from concurrent tasks
on multiple CPUs, are known as spinlocks.

Unique spinlocks are allocated in memory, and
identify discrete critical sections associated with spe-
cific shared data.

The SMP spinlock architecture decouples locking
for independent data. Independent data objects can
be locked independently, and allow multiple threads
to execute in multiple critical sections of the kernel
at the same time.

4.2.1 Uniprocressor Spin Lock Definition

The code between SMP and UP Kernels is common,
and for this reason, the spinlock operations are found
throughout the Kernel.

When CONFIG SMP is not defined at build
time, the implementation uses the uniprocessor def-
inition of spinlocks

typedef struct { } spinlock_t;

The uniprocessor implementation of spinlock
does not allocate any physical memory.

A side-effect of this optimization is, that the
identity of the locked critical section is sacrificed by
the same UP optimization. The UP- optimized spin-
lock implementation does not provide any means to
identify, whether a given critical section is locked or
unlocked, without examining the running task’s pro-
gram counter, or compiling in additional information
via the DEBUG SPINLOCK config option.

5

4.2.2 SMP Spin Lock Definition

Critical sections in the SMP Kernel are demarcated
by physical spinlocks:

typedef struct {

volatile unsigned int lock;

} spinlock_t;

4.3 Spin Lock Operation

When a task acquires a spinlock:

• preemption is disabled

• the acquiring task is allowed into the critical
section

• No task switches can occur on the processor,
until a spin unlock operation takes place

• Interrupts may be disabled, if a function from
spin lock irq family has been called

A spinlock is acquired at the beginning of a crit-
ical section, via the spin lock operation.

#define spin_lock(lock) _spin_lock(lock)

#define _spin_lock(lock) \

do { \

preempt_disable(); \

_raw_spin_lock(lock); \

} while(0)

define _raw_spin_lock(lock)

__raw_spin_lock(&(lock)->raw_lock)

Rescheduling can take place at the end of a crit-
ical section, when the spinlock is unlocked by the
preempt enable() operation, which as called as part
of the spin unlock operation:

#define spin_unlock(lock) _spin_unlock(lock)

#define _spin_unlock(lock) \

do { \

_raw_spin_unlock(lock); \

preempt_enable(); \

} while (0)

#define _raw_spin_unlock(lock)

__raw_spin_unlock(&(lock)->raw_lock)

The raw spin lock and raw spin unlock func-
tions establish the abstraction layer accommodating
the necessary, architecture-specific, physical instruc-
tion implementation.

In addition, the raw spin lock implementation
is also different for SMP and UP configurations on
each architecture.

4.3.1 Uniprocressor Spin Lock Operation

On uniprocessor systems, the implementation of
raw spin lock and raw spin unlock, are defined as
a no-op:

#define __raw_spin_lock(lock) \

do { (void)(lock); } while(0)

#define __raw_spin_unlock(lock) \

do { (void)(lock); } while(0)

In the uniprocessor kernel spinlocks thus degen-
erate to simple preempt disable / preempt enable
operations.

The preempt count variable is essential to cor-
rectly track the preemption state across nested crit-
ical sections in a UP system.

4.3.2 SMP Spin Lock Operation

The locking operation is significantly more complex
on SMP, since the lock must be physically manip-
ulated in a specific memory transaction required to
obtain the lock.

The lock operation is typically performed by spe-
cial processor instructions, known as test-and-set,
or compare-and-exchange operations. The special
atomic instructions guarantee completion of a mem-
ory operation in a single update cycle, such that no
hardware-level races can ensue.

The architecture-specific implementation of the
atomic raw spin lock operation, guarantees that no
other CPU can modify the same memory at the same
time and obtain the same result.

Shown is the i386 implementation of the raw
operations:

static inline void

__raw_spin_lock(raw_spinlock_t *lock)

{

__asm__ __volatile__(

__raw_spin_lock_string

:"=m" (lock->slock) : : "memory");

}

#define __raw_spin_lock_string \

"\n1:\t" \

"lock ; decb %0\n\t" \

"jns 3f\n" \

"2:\t" \

"rep;nop\n\t" \

"cmpb $0,%0\n\t" \

"jle 2b\n\t" \

"jmp 1b\n" \

"3:\n\t"

6

In the SMP kernel implementation of
spin unlock, an architecture-specific raw spin unlock
operation, similar to the raw spin lock operation,
performs the architecture-specific atomic memory
operation.

static inline void

__raw_spin_unlock(raw_spinlock_t *lock)

{

__asm__ __volatile__(

__raw_spin_unlock_string

);

}

#define __raw_spin_unlock_string \

"movb $1,%0" \

:"=m" (lock->slock) : : "memory"

4.4 Spinlock Contention

Critical sections protected by spinlocks are non-
preemptible.

4.4.1 Protection from other Threads

If a thread encounters a spinlock in the SMP kernel
on an SMP system, then a lock contention situation
arises, where a task on another CPU is holding the
lock. The thread contending for the locked spinlock,
will busy-wait, or ”spin”, while waiting for the lock
to be released. This behavior gives rise to the name
”spin lock”.

While a thread is ”spinning” on a CPU, waiting
for a lock, no useful work is being performed on that
CPU.

4.4.2 Protection from Interrupts and

Threads

Protection of shared data from threads and inter-
rupts is conceptually similar to the uniprocessor im-
plementation: In addition to disabling preemption
on the local CPU, and acquiring a spinlock, inter-
rupts must also be disabled.

A special set of variants of the spin lock family
of functions addresses this scenario:

The spin lock irq functions allow spinlocks to
protect code shared with exception handlers.

As discussed previously, data shared with inter-
rupt handlers must be protected by disabling inter-
rupts, to avoid corruption by an interrupt. In addi-
tion, data protected by a critical section, can cause
a dead lock if the exception occurs in a critical sec-
tion and contends for a lock that is already held by
the task on that CPU. In this event, the interrupt

handler would spin, waiting for the lock to be re-
leased, while blocking the task holding the lock from
running.

The spin lock functions which also disable inter-
rupts are:

• spin lock irq

• spin lock irqsave

4.5 Summary

The implementation of spinlocks extends the func-
tionality of preempt disable/preempt enable() to the
SMP Kernel.

In the UP kernel, the identity of the spinlock pro-
tected critical section is lost at compile time. It is
impossible to identify which critical section is locked
in a uniprocessor kernel, without knowledge of the
program counter.

The locked critical section is readily identifiable
(in SMP configuration), since the spinlock associated
with that section will be locked.

The SMP implementation is more relevant to the
fully-preemptible Real-Time Kernel, since any SMP-
safe code in the kernel is also, by definition, fully
preemptible.

5 Kernel Preemption Latency

Analysis

The preemption latency of the Linux 2.6 Kernel is
composed of two general classes:

1. Latencies caused by interrupt-domain process-
ing

2. Latencies caused by critical-section processing

5.1 Interrupt-Domain Latencies

In the Linux kernel, it is possible for a thread to be
suspended while executing, for the duration of in-
terrupt exception processing. No task switches can
occur until interrupt processing has completed.

Preemption latency associated with interrupt-
domain processing has 3 sub-components:

1. Interrupt-disabled code sections. The IRQ-
disable sections in the code have a minor im-
pact on total task preemption latency.

2. Interrupt-context processing of system and
driver interrupts is a major contributor to
task preemption latency. In Linux, interrupt-
context processing takes place at priorities

7

above task priority. Preemption latency is es-
pecially affected when heavy I/O transients are
encountered.

3. Interrupt-context softIRQ processing is a ma-
jor contributor to task preemption latency.
Network-related softIRQ processing has been
identified as a specific source of significant pre-
emption latency.

It is possible to move 100% of softIRQ processing
activity into softirqd, reducing the impact of softIRQ
processing on preemption latency. No other, sig-
nificant opportunies for improvement of preemption
latency response time exists without extending the
current design of the interrupt-handler domain.

5.2 Task-Domain Latencies

The Linux kernel disables preemption while a
critical-section operation is underway. Consequently,
a high priority task can be blocked from preempt-
ing any lower priority task in a critical section, until
the low priority task exits the critical section and
re-enables preemption.

Preemption latency associated with critical sec-
tion processing is governed by the following Linux
Kernel design features:

1. Under the non-preemptible locking design of
the Linux 2.6 Kernel, any critical section
can block preemption, and therefore suppress
scheduling and execution of a high priority
task. If a thread is holding a spinlock, any
other task attempting to access the lock must
wait for the lock to be unlocked. A high-
priority process will therefore experience vari-
able, and potentially extended delays, resulting
from unpredictable preemption latencies asso-
ciated with locked critical sections.

2. In the SMP Kernel, interrupt activity can ex-
tend the locking time of non-preemptible spin-
locks. If interrupts are enabled on the CPU,
where a thread is executing in a critical sec-
tion, and another thread on another CPU con-
tends for the critical section, then that thread
will incur additional latency in obtaining the
spinlock. If interrupt activity is taking place
on the CPU owning the spinlock, then the in-
terrupts delay the thread owning the lock, and
therefore also delay the thread waiting for the
lock.

3. Swapping preempts all running processes,
while paging virtual memory into RAM. The

kernel swap daemon, kswapd, runs at ”uncon-
trollable” priority levels as a result of page-
fault exceptions. Swapping can cause priority
inversion, since high-priority processes can be
blocked by swapping activity on behalf of a low
priority process.

4. In the UP kernel, locking any critical section
is equivalent to locking all critical sections, re-
gardless of whether they are accessed or not.
For example, even if it is known, that a waiting
high-priority task does not access any critical
sections, and thus poses no risk of corrupting
shared data, the current spinlock implementa-
tion blocks execution of that task.

5. The BKL (Big Kernel Lock) is a relic from the
early 2.x kernels series. When a task locks the
BKL, preemption is disabled. The BKL is asso-
ciated with locking during module loading and
unloading, and use of the BKL has not been
completely eliminated elsewhere in the Kernel.

The use of the Big Kernel Lock is unique in the
Kernel, since this lock can be relinquished by
a task suspending itself, and is subsequently
re-acquired by the same task, before proced-
ing. The design of the BKL creates an SMP
bottleneck, and therefore its use is deprecated.

In the 2.6.11 Kernel, the BKL has been con-
verted to a system semaphore, allowing SMP
tasks to block, rather than to spin on the CPU,
waiting for another CPU’s task to release the
BKL. This transition reducing the BKL’s im-
pact on SMP throughput, and improves pre-
emption latency in the Kernel.

5.3 Aggregate Preemption Latency in
Linux

The worst-case preemption latency is defined as the
aggregate of worst-case interrupt-domain processing
latency in the kernel, combined with the worst-case
path through any nesting of critical sections.

The connection between interrupt-domain laten-
cies and task-level preemption latencies requires that
improvements be made across all Kernel subsystems
affecting preemption latency, in order to achieve a
consistent performance improvement.

The locking architecture of the Linux Kernel of-
fers anly very limited, but labor-intensive potential
for improvement of worst-case preemption latencies.

Eventually, there would be a plateau of relatively
constant preemption latency, but that level would
still be too high for a large class of real-time appli-
cations.

8

Nevertheless, due to the impact of priority in-
version, it would still be possible for general high-
priority system applications, to incur excessive laten-
cies that could maliciously disrupt the application’s
time-critical operation.

5.4 Summary

• There are over 10,000 individual critical sec-
tions in a typical Linux 2.6 Kernel. Identifying
the longest critical sections is a time-consuming
process based on extensive testing and analy-
sis.

• Modifying the longest critical sections to con-
form to a maximum is tedious and error-prone.
Optimization of the performance of the Ker-
nel’s non-preemptible regions, has been com-
pared to leveling a mountain range by scraping
away from the tops

• Once a performance improvement is achieved,
maintaining Kernel critical sections to a maxi-
mum execution time standard required contin-
uous regression-tracking effort

• The existing locking-architecture constrains
SMP scalability as well as preemption perfor-
mance. This is especially relevant in near-
future n-way systems based on dual, quad, and
8-way cores planned by semiconductor manu-
facturers.

5.5 Conclusion

1. Significant interrupt-domain enhancements
pertaining to preemption latencies are are not
possible in the Community Kernel’s existing in-
terrupt subsystem.

2. It is prohibitive to optimize non-preemptible
critical sections on a case-by case basis to im-
prove task-domain preemption.

6 The Fully-Preemptible Real-
Time Kernel

Realization of significant preemption performance
improvements in the Linux Kernel mandates re-
examination of the original Linux design principles,
as they pertain to interrupt processing and critical
section management.

The Real-Time enhancements maintained in
Ingo Molnar’s patch apply to the current Kernel
shortcomings in regards to aggregate preemption la-
tency, without compromising the locking principles
established in the Community kernel.

6.1 Requirements

One of the primary principles of Linux kernel devel-
opment, is to produce generic kernel code, that can
easily be ported to architectures, and functions on
the widest-possible range of installed systems.

The general objectives for the real-time preemp-
tion implementation can be outlined as follows:

• Minimize the reliance upon architecture-
specific hardware features

• Readily portable to new architectures

• Binary-compatibility with Community Linux
kernels

• Unmodified, but SMP-correct, and up-to-date,
3rd-party drivers must compile and work in the
RT kernel

The real-time preemption enhancements achieve
all of the criteria, offering a very portable, yet aggres-
sive solution to the Kernel′s preemption deficiencies.

The enhancements to the Community Linux ker-
nel, necessary to achieve real-time performance are
structured to address the specific classes of short-
comings in the Community Kernel:

1. Interrupt-domain enhancements to reduce la-
tencies caused by Interrupt processing.

2. Critical section locking enhancements to re-
duce task level latencies caused by locking of
critical sections within the Kernel to protect
shared data.

3. Further decoupling of shared data into per-cpu
variable and independent critical sections.

6.2 Thread-Context Interrupt Han-
dling

The real-time Kernel demotes all interrupt activity
from interrupt-context, and create tasks to handle
interrupts in task context.

This approach allows a generic solution to be
provided, that is portable, and independent of
architecture-specific enhanced capabilities.

9

6.2.1 Interrupt Priorities

The following functional requirements are imposed
on the real-time interrupt subsystem:

1. Interrupt execution must be preemptible

2. Interrupt execution must adhere priorities

3. Interrupt priories must be allocatable in task-
level priority space, and it must be possible to
elevate a real-time task′s priority above inter-
rupt handling

4. It should be possible to reproduce hardware-
level interrupt priority assignments with task-
level interrupt priority assignments

Hardware priority support is not available on
all Linux architectures, prohibiting generic solutions
that consistently leverage hardware-interrupt prior-
ity.

On modern processors, interrupt processing is
usually performed at a higher priority level than task
processing.

A hardware interrupt priority solution would not
accomodate the requirement to elevate task priorities
above IRQ priorities.

Therefore, interrupt processing in task priority-
space, also allows real-time tasks to execute at higher
priority levels than interrupt handlers.

It is not possible for a thread to block when run-
ning in IRQ context.

Thread-context interrupt handlers can be pre-
empted under the same constraints as other threads
in the system.

6.2.2 Softirq Processing in Thread Context

The Softirq Daemon processing absorbs interrupt-
context softirq overloads into task space, and accepts
low-level transient workloads generated by various
subsystems.

Interrupt response time can be improved by de-
ferring 100% of softirq activity into softrqd. This
change eliminates all latencies associated with non-
preemptible interrupt-context softirq activity.

A new Kernel configuration option has been
added, which allows configuring the kernel to demote
softirq activity into thread context:

Processor type and features --->

[*] Thread Softirqs

6.2.3 Hardirq Processing in Thread Context

A top-half interrupt, or hardirq, is designed to per-
form the minimum amount of servicing necessary to
allow the associated device to resume operation.

Multiple pending hardirqs at high frequencies
can present a formidable system load, and must be
prioritizable in thread context.

Thread-based IRQ processing alows hardirqs to
run preemptably in thread context, and therefore
significantly reduces sporadic processing delays and
consequent preemption latencies within the kernel.

A new Kernel configuration option has been
added, which allows configuring the kernel to demote
hardirq activity into thread context:

Processor type and features --->

[*] Thread Hardirqs

6.3 Task-Domain Real-Time En-
hancements

The primary objective in achieving effective task-
level preemption latency reduction in the Linux ker-
nel, is to reduce the total size, and number of non-
preemptible critical sections.

Large portions of the code executed by softird
and hardirqs accesses data protected by critical sec-
tions, and is therefore non-preemptible.

Additionally some interrupt handlers execute
with interrupts disabled (SA INTERRUPT), and are
therefore also non-preemptible on the CPU.

The enhancements in the interrupt domain elimi-
nate inpredictable interrupt-context processing, dur-
ing Kernel operation, however they cannot eliminate
non-preemptible Kernel operation.

• No significant improvements in task preemp-
tion latency can be achieved by simply moving
softirq interrupt activity to task space

• No significant improvements in task preemp-
tion latency can be achieved by moving hardirq
interrupt handling into task space

The design principles of the fully preemptible
Real-Time Linux kernel are based on extensions to
processing and locking concepts already found in the
SMP Linux kernel:

6.3.1 Critical section independence

Critical sections are identified by unique names. In
SMP, multiple CPUs can concurrently traverse inde-
pendent critical sections in the Kernel.

Therefore, if the multiple tasks are allowed to op-
erate inside independent critical sections at the same
time, under specific conditions.

Critical sections can be protected by an alterna-
tive locking mechanism known as a Mutex. The use
of a Mutex, to protect critical sections, guarantees
data integrity, while extending the operation of the
spinlock in several key aspects:

10

1. Tasks are suspended in a priority queue, when
a locked critical section is encountered. Wait-
ing tasks are activated when the critical section
is unlocked

2. The kernel associates a locked critical section
with a task, by storing the task’s identity in
the lock, when the mutex is acquired

3. Critical sections can be protected without dis-
abling preemption

4. Priority inheritance can be applied to tasks op-
erating in locked critical sections

6.3.2 Spinlock Substitution

The Linux 2.6 Kernel is already preemptible while
tasks are executing outside of critical sections.

Replacing non-preemptible spinlocks with Mu-
texes, enables task-preemption inside critical sec-
tions with real-time characteristics:

• Thread ownership is associated with every
locked mutex in the RT kernel

• The RT mutex provides deadlock detection

• The RT Mutex provides priority inheritance

• All locks are assumed to be preemptible, in-
cluding locks declared in driver code. This de-
sign eliminates the possibility, that an ineffi-
cient locking implementation in a driver can
introduce undetected, non-preemptible latency
into the system

• Only a small, managable subset of locks remain
non-preemptible

• Internal timing variations caused by increased
preemptibility is context-switch transparent to
the executing task

6.4 Performance Impact

The mutex operations introduce additional overhead,
when compared to the non-preemptible spinlock ker-
nel implementation. The additional overhead is a
necessary trade-off to accommodate preemptible task
scheduling.

The performance impact from executing in-
terrupts in task space, is perceptible in network
throughput, and can be detected in benchmarks of
some I/O operations.

6.5 Summary

Deferral of interrupt processing in task space, com-
bined with substitution of the real-time mutex for
spin-locks, results in the Linux kernel code becom-
ing highly preemptible.

In the fully-preemptible (PREEMPT RT) Real-
Time Linux kernel, the scheduler can preempt
threads anywhere in the kernel, even while operat-
ing inside critical sections.

The underlying concept of the PREEMPT RT
kernel is expressed by a simple rule: Only code that
absolutely must be non-preemptible is allowed to be
non-preemptible.

6.5.1 Real-Time Kernel Features

The fully-preemptible Linux Kernel design is based
on a functional extension of the non-preemptible
locking features found in the SMP Kernel. The sub-
sequently introduced RT-Mutex data type provides
the foundation of complete preemption, and provi-
sions priority inheritance and deadlock detection.

6.5.2 SMP Foundation

The real-time problem is simplified dramatically by
the robustness of the Linux SMP implementation,
which already guarantees timing independence and
correct operation in a concurrent environment.

The locking paradigm of the Real-Time Linux
kernel is consistent with SMP-safe operation and and
context-switch transparent coding standards.

6.5.3 Preemptible BKL

The BKL is implemented as a mutex the Linux RT
kernel. This transition allows code which locks the
BKL, to become preemptible.

7 The Real-Time Mutex

The Real-Time mutex facilitates the operation of
multiple threads in multiple critical sections in a
uniprocessor Linux Kernel.

7.1 Priority Inheritance

The generic Real-Time mutex is adapted for use with
the Real-time kernel, and offers priority inheritance
to reduce delays imparted on high-priority applica-
tions attempting to access locked critical sections.

A high priority task encountering a locked crit-
ical section must not be delayed indefinitely by a
lower priority task blocking the contended critical
section.

11

In the Real-Time Linux Kernel, multiple critical
sections can be locked at the same time.

Priority Inheritance boosts the priority of a task
preempted in a critical section, to the highest prior-
ity of any task waiting for the same critical section.
Transitive priority inheritance allows the highest pri-
ority thread to assert its priority on multiple levels
of critical section dependencies.

7.2 Deadlock Detection

Deadlocks can be created in incorrectly implemented
critical section code. These deadlocks must be de-
tected and resolved. The Linux Kernel provides
Deadlock detection on the Real-Time kernel mutex.

7.3 Nested Critical Sections: Mutex
and Deadlocks

Nested locking is a significant contributor to preemp-
tion latency in the Community Kernel. In the Real-
Time Linux Kernel, the nesting of critical sections
requires an ordering of nested locks to avoid dead-
locks.

7.4 Mutex and raw-spinlock Co-
existence

Not every spinlock in the Linux Kernel, can be con-
verted to a mutex. Certain critical sections of low-
level code are not preemptible, and must be pro-
tected by the legacy non-preemptible spinlock.

Examples of non-preemptible critical sections
are:

• short-held locks, where a context switch would
require greater overhead

• locks protecting hardware registers that must
be non-preemptible for correct system opera-
tion

• locks nested within other non-preemptible
spinlocks

7.4.1 Lock Nomenclature

In the RT kernel, the legacy non-preemptible spin-
lock implementation co-exists with the new mutex-
based locks. The non-preemptible lock has been re-
named to raw spin lock.

A new data type corresponds to the new lock
name: raw spinlock t

The reason for creating a new name for the old
lock type, lies in the architecture of the RT kernel:

The vast majority of the ten-thousand+,
spinlock-protected critical sections found in the

Linux kernel have been converted to blocking mu-
texes.

Only a small number of raw spinlocks are re-
tained in the RT kernel. It is much easier to change
the declaration of 100 locks, than of 10,000.

Some of the locks that do remain non-
preemptable, are essential for correct operation of
the system. The scheduler’s runqueue locks, as well
as the synchronization code that synchronizes ac-
cess to the real-time mutexes, are examples of non-
preemptable code.

3rd-party drivers generally compile by default to
be fully preemptible.

7.5 Spin-Lock Function Mapping

The initial RT Kernel Prototype had a major short-
coming in maintainability, since the patch had
to explitly modify all references to operations on
raw spin lock. This compromised the maintainabil-
ity of the patch, and increased its size intolerably.

A better inplementation to accommodate the co-
existence of the two distinct locking mechanisms in
the RT kernel was developed by Ingo Molnar.

The function mapping operation uses a GCC pre-
processor operation, that is performed on each spin-
lock function call, in order to map the operation to
either a raw spinlock, or a mutex.

The pre-processor operation is known as the
builtin types compatible function, which will

examine the declared type of the lock and compare
it to a known type-name (raw spin lock).

The effective function mapping is performed by
the TYPE EQUAL macro shown below:

#define TYPE_EQUAL(lock, type) \

__builtin_types_compatible_p(typeof(lock),\

type *)

The PICK OP function-mapping construct is the
mechanism used to allow two locking primitive to co-
exist without compromising the functionality of the
non-RT configured kernel.

PICK OP converts lock operations to the ap-
propriate low-level function type (either mutex or
spinlock) at compile time.

The lock operation is determined based upon the
declared data type, of the operation’s object.

#define PICK_OP(type, optype, op, lock) \

do { \

if (TYPE_EQUAL((lock), type)) \

raw##optype##op((type *)(lock));\

else if (TYPE_EQUAL(lock, spinlock_t)) \

_spin##op((spinlock_t *)(lock)); \

else __bad_spinlock_type(); \

} while (0)

12

The spin lock header-file construct below, effec-
tively maps the spin lock function call using the
PICK OP primitive.

#define spin_lock(lock) \

PICK_OP(raw_spinlock_t, spin, _lock, lock)

7.5.1 PICK OP Drawbacks

The deeply embedded low-level function structure
makes it difficult to determine from an arbitrary
piece of code, whether the code is operating on a
mutex, or on a raw spinlock.

It is important to inspect the actual variable dec-
laration to resolve the ambiguity.

7.6 Mutex Operation

7.6.1 NON-Preemptible (”Raw”) Spinlock

Operation

If the lock is declared as a raw spinlock t, spin lock
is mapped to raw spin lock:

#define _raw_spin_lock(lock) \

do { \

preempt_disable(); \

__raw_spin_lock(lock); \

__acquire(lock); \

} while(0)

The lock-operation from this point on is identi-
cal to the community kernel implementation. The
raw spin lock function that is called in this imple-

mentation, is the architecture-specific, atomic func-
tion that operates on the legacy, non-preemtable
(raw spinlock) data type in the SMP kernel’s phys-
ical memory. In UP systems, this lock is still op-
timized to a preempt disable operation. The addi-
tional has been added to accommodate the addi-
tional abstraction layer required for the PICK OP
macro. The developer should be aware that use of
the raw function types and their lower level sup-
port functions discussed here, results in code that is
incompatible with some Communitys Linux 2.6 ker-
nels.

7.6.2 RT Mutex Operation

If the lock is declared as a spin lock, the PICK OP
construct maps the function call to spin lock, and
the operations performed will use a mutex parame-
ter:

void _spin_lock(spinlock_t *spin)

{

__spin_lock(spin, CALLER_ADDR0);

}

static void __spin_lock(spinlock_t *lock,

unsigned long eip)

{

SAVE_BKL(_down_mutex(&lock->lock, eip));

}

#define SAVE_BKL(ACTION) \

{ \

struct task_struct *task = current; \

unsigned int saved_lock_depth; \

\

saved_lock_depth = task->lock_depth; \

task->lock_depth = -1; \

\

might_sleep(); \

ACTION; \

\

task->lock_depth = saved_lock_depth; \

}

static void _down_mutex(struct rt_mutex *lock,

unsigned long eip)

{

TRACE_WARN_ON(lock->save_state != 1);

__down_mutex(lock, eip);

}

The down mutex operation, finally performs
the locking, and allows the task to suspend itself if
the mutex is contended.

static void __sched __down_mutex(

struct rt_mutex *lock,

unsigned long eip)

{

...

}

7.7 Locking API

Low-level locking will see continued optimization and
development in the Linux kernel . The developer is
encouraged to utilize the standard high-level func-
tions (spin lock, etc.), for all non-time-critical code
development.

Non-preemptible locks must be de-
clared explicitly, using raw spinlock t or DE-
CLARE RAW SPINLOCK definitions.

The proper transition to the real-time mutex
type is guaranteed, when using conventional high-
level locking functions in code

13

8 Kernel Timers

8.1 Brief History of Timers

The need for some type of timer is long standing
in Unix. A simple example is the alarm system
call. The alarm system call will schedule a time
out in an arbitrary number of second. As time
has gone on timers have grow in complexity and
the user space portion has been standardized by
POSIX in [1]. Issue 6 IEEE Std 1003.1, 2004 Edition
http://www.opengroup.org/onlinepubs/009695399

8.1.1 Linux system timers

The timer subsystem in Linux was designed mainly
to function off of the the kernels notion of time called
a jiffie . All timers would have their timeout con-
verted to jiffies , then a Linux system timer would
be initialized to handle it. The POSIX timers where
added as an extension to this, so a POSIX timer cre-
ated in user space would eventually trickle down to
a Linux system timer.

Linux system timers are handled in by a per cpu
structure of cascading vectors, shown below.

typedef struct tvec_s {

struct list_head vec[TVN_SIZE];

} tvec_t;

typedef struct tvec_root_s {

struct list_head vec[TVR_SIZE];

} tvec_root_t;

struct tvec_t_base_s {

struct timer_base_s t_base;

unsigned long timer_jiffies;

tvec_root_t tv1;

tvec_t tv2;

tvec_t tv3;

tvec_t tv4;

tvec_t tv5;

} ____cacheline_aligned_in_smp;

When a timer is scheduled it is places into one
of five vectors tv1, tv2, tv3, tv4, or tv5. The vector
is picked based in how much time needs to pass be-
fore the timer expires. Each vector can be thought
of as an array of jiffies moving into the future. All
that needs to be done to insert a timer is to place it
in the vector position equal to it’s time out value in
jiffies. The insert operation amounts to a hash table
insert, and it operates in O1 or constant time. The
removal of a timer is also constant time.

8.1.2 Timer Cascade

The Linux timer system requires attention at every
timer interrupt. When the timer interrupt in trig-

gered this indicates that the jiffies value will be in-
cremented. By incrementing the jiffies value this also
means that all the time vectors must be shifted to
the right. To accomodate this shifting the cascade
functions was implemented.

static int cascade(tvec_base_t *base,

tvec_t *tv,

int index)

{

/* cascade all the timers from

tv up one level */

struct list_head *head, *curr;

head = tv->vec + index;

curr = head->next;

/*

* We are removing _all_ timers from

* the list, so we don’t have to

* detach them individually, just

* clear the list afterwards.

*/

while (curr != head) {

struct timer_list *tmp;

tmp = list_entry(curr,

struct timer_list,

entry);

BUG_ON(tmp->base != &base->t_base);

curr = curr->next;

internal_add_timer(base, tmp);

}

INIT_LIST_HEAD(head);

return index;

}

This function then runs on all time vectors and
essentially re-inserts all timers in the system at that
time. The benefits to this system are seen only in
it’s fast timer insertion and deletion. It’s impor-
tant to note that, when this system was developed,
most timers where inserted then deleted prior to
their expiration which has been observed by George
Anzinger, and Thomas Gleixner in [5].

The cascade function runs with interrupts and
preemption disable. As noted by Ingo Molnar on the
Linux Kernel Mailing List, he observed 16 million
timers running at once.

This presents some very real latency problems.
”Another source of regression is the fact that quite a
lot of timer functions execute long lasting codepaths.
E.g. in the networking code rt secret rebuild() does
a loop over rt hash mask (1024 in my case), over en-
tries and over some subsequent variable sized loops
inside each step. On a 300MHZ PPC system this ac-
cumulated to a worst case total of >5ms [including
cascade] ... ” [5].

The function of the jiffie is to represent a pe-
riod of time, however this period is not static. A

14

http://www.opengroup.org/onlinepubs/009695399

new feature was recently added to Linux that allows
the span of a jiffie to be selected during pre-compile
kernel configuration. ” [This changing jiffie period
causes an] increased necessity to move non-expired
timers from the outer [time vectors] to the primary
[time vector]” [5]. These movements are done inside
the cascade function.

8.2 High-Resolution Timers

The POSIX standard discussed timers of different
resolution [1]. UTIME [8] was the first project that
implemented sub jiffie timer resolution in the Linux
Kernel. Subsequently George Anzinger introduced
the High-Resolution Timers patch (HRT), hereafter
referred to as HRT.

8.2.1 High Resolution Timer Design

The design of HRT was to use a Linux system timer
to organize all the sub jiffie timers. Each Linux sys-
tem timer represented a queue of timers that would
be triggered in that jiffie. HRT can also use it’s own
timer interrupt. This timer interrupt would be used
to trigger each of the timers queued by HRT’s Linux
system timer.

The other mode of operation is for HRT to use
only the system timer, however it’s desirable to have
an independent timer. HRT was designed for mi-
crosecond resolution , but was molded around jiffie
resolution.

IRQ

T1 T3T2 T4

T1.1 T1.2 T1.3 T1.4

T2.1 T2.2 T2.3 T2.4

Current HRT queue

Linux System Timers

Next HRT queue

FIGURE 1: High level HRT design

The HRT design was extended from the design
used by the UTIME project.

”To achieve microsecond resolution timing, we
have added a field to the timer list structure (see
include/linux/timer.h). This field (usec) indicates
the microsecond within the current ”jiffy” that the
timer is to timeout. To maintain compatability with
the rest of the kernel, we have introduced the notion
of a software clock. This clock maintains the ”jiffies”

granularity and calls the ”do timer()” routine every
jiffy, so that the rest of the system which depends on
this would run properly.” [8]

The difference between UTIME and HRT, is that
UTIME re-factored the Linux System Timers to have
microsecond accuracy while maintaining compatibil-
ity. HRT is built on top of Linux System Timers
and introduced a separate interrupt to maintain mi-
crosecond resolution.

8.3 Ktimers

Ktimers is a current project [5] by Thomas Gleixner
and Ingo Molnar. Like HRT, and UTIME, Ktimers
can also provides high resolution timers. ”ktimers
seperate[s] the ”timer API” from the ”timeout API”.
ktimers are used for ... - nanosleep - posixtimers -
itimers” [5] . This separation of timers that usu-
ally do expire, from timers that usually don’t (i.e.
timeout timers) is fairly novel. The seperation al-
low a clean implementation for Posix timers, which
currently use Linux System Timers.

8.4 Design of Ktimers

All timers under Ktimers are stored in a red-black
tree. This provides a fast insertion however it’s not
constant time like Linux System Timers. Ktimers
uses a structure called ktime t to hold the expi-
ration time. Ktimers was created so all of it’s
timers are scheduled ith the configured system reso-
lution. Ktimers uses nanosecond timeouts specifica-
tions. The first implementation was based on scalar
64 bit nanosecond variables. Recently the internal
representation of time values was changed to a hy-
brid of a modified timespec structure:

typedef union {

s64 tv64;

struct {

#ifdef __BIG_ENDIAN

s32 sec, nsec;

#else

s32 nsec, sec;

#endif

} tv;

} ktime_t;

The data type was introduced to improve per-
formance on 32bit CPUs by using 32 bit math op-
erations for conversion between the Posix timespec
structure and the 64-bit nanosecond value used by
Ktimers. 64bit systems use the scalar nanosecond-
based representation of internal time values.

Like HRT, Ktimers uses it’s own interrupt to
trigger timers. The difference between Ktimers and
HRT is that ktimers doesn’t interact with the Linux

15

System Timers. Ktimer time keeping is entirely inde-
pendent of the jiffies value. This also allows for clean
usage of the 64-bit nanosecond values. If these val-
ues where based off of jiffies like in the current Linux
Posix timers code, then expiration values would have
to constantly converted between time representation.

A good summary of the in-kernel API is given
in: http://lwn.net/Articles/151793/ .

9 Robust User-Space Mutex

9.1 Robust Mutex Introduction

Until recently, there has been very little progress
made in the area of user space real-time.

There are currently two user space projects for
a robust mutex implementations. The longest run-
ning of which is FUSYN maintained by Inaky Perez-
Gonzalez of Intel, and the other Robust Futex by
Dave Singleton of MontaVista and Todd Kneisel of
Bull.

The focus of this section is to give some overview
of robust mutex projects, and then to specifically fo-
cus on Dave Singleton’s and Todd Kneisel’s imple-
mentation.

9.2 Real Time

Mutexes are software syncronization mechanisms
that can be used to control and track access to shared
resources. A Real Time mutex refers to a mutex that
is aware of the priorities of it’s lockers. There are sev-
eral features that play into this. Priority inheritence,
and priority queuing are likely the most import Real
Time features applied to a mutex.

Priority Inheritence is the process of changing
the priority of a mutex owner based on the highest
priority task wait on the mutex. This process is tran-
sitive. So , priority inheritence operates on all mutex
owners in a chain of sleeping owner and bottoms out
on the running owner.

Priority Queuing referes to the ordering of the
tasks waiting on a given mutex. This ordering is done
from highest priority to lowest priority. It’s desirable
for this to be done in O(1) or a constant time data
structure.

These Real Time features require that the owner
of a mutex be tracked. Tracking of a mutex owner is
also nessecary for Robustness.

9.3 Robustness

Robustness refers to the addition of a tracking
mechanism for user space mutex lockers. Robust mu-
texes are used primarily by user space processes. The

tracking is used to follow when a user space process
dies while holding a mutex. In order to track when a
process dies, the mutex must have some hooks into
the kernel. FUTEX [4] was the first user space mutex
to provide the nessesary kernel hooks.

The term Robust Mutex comes from Sun Mi-
crosystems, who was one of the first to standardize
this type of extention . A key distinction to make
is where a mutex is used i.e. userspace or kernel
space. Robustness is simple to track inside the ker-
nel. It’s actually just considered an error condition
for a kernel process to exit while holding a mutex
or semaphore. However, in userspace it becomes a
particular challenge.

9.4 Futex

FUTEX was the first proposal for a user space mu-
tex implemented in the kernel. ”Fast userlevel lock-
ing is an alternative locking mechanism to the typ-
ical heavy weight kernel approaches such as fcntl
locking and System V semaphores. [In the FU-
TEX implemetation], multiple processes communi-
cate locking state through shared memory regions
and atomic operations. Kernel involvment is only
nessecary when there is contention on a lock, in or-
der to perform queuing and scheduling functions” [4].
The FUTEX implemetation makes the current as-
sumption that most locks will be uncontended. This
provides a common fast path that doesn’t enter the
kernel.

FUTEX was designed to be simply a fast user
space mutex. It was not designed with robustness or
real time applications in mind. The queuing func-
tionality of the FUTEX implementation is not de-
signed to directly take a waiting processes priority
into account. The implementation is to ”wake all
waiting processes and have them recontend for the
lock ... refered to as random fairness” [4]. This will
allow a high priority task to take the lock first , but
it doesn’t mean the highest priority waiting task will
take the lock.

The FUTEX designers also make specific note of
the robustness problem. ”... a solution needs to be
found that enabled recovery of ”dead” locks. We de-
fine unrecoverable locks as those that have been ac-
quired by a process and the process terminates with-
out releasing the lock. ... We have not addressed
this problem in our prototypes yet.” [4]

The FUTEX implementation today is largely the
same as the original design. It stands out as the main
example in linux of a fast user space mutex. This
design was leveraged by Todd Kneisel to add simple
robustness, then again by Dave Singleton .

16

http://lwn.net/Articles/151793/

9.5 Userspace Implementation

The developers of both robust mutex projects have
implemented their mutexes with Posix in mind. Both
projects provide some changes to Glibc. Glibc mod-
ification must be made to provide the Posix API.

The robustness extensions to a user space mutex
isn’t covered by Posix. This unfortunate detail re-
quires the developers to define their own standard.
This has made the user space API some what dif-
ferent depending on who has made the changes. All
projects implement at least a subset of the original
Sun Microsystems API .

int pthread_mutexattr_setrobust_np

(pthread_mutexattr_t *attr,

int *robustness);

With one of the following attributes sent in the
robustness field.

PTHREAD MUTEX ROBUST NP signals
that this mutex should be robust. If the owner dies,
the next waiter will be woken up and return with the
error flag EOWNWERDEAD.

PTHREAD MUTEX NOROBUST NP sig-
nals that robustness should not apply to this mutex.

Although atleast these two flags are available in
all implementation, there are likely more depending on
which implementation is used.

9.6 Fusyn

FUSYN maintained by Inaky Perez-Gonzalez of Intel has
been around since 2003. Fusyn started out as the rtfu-
tex, ”Once the requirements were laid out, we first tried
modifying the futex code in kernel/futex.c adding func-
tionality while maintaining the original futex interface”
[6]. This approach would have been similar to what Dave
Singleton and Todd Kneisel created except that the rt-
futex would have had to embody a complete real time
mutex.

The rtfutex approach was eventually abandoned.
”This design andit′simplementation was broken: the
futexes are designed to be queues, and they cannot be
stretched to become mutexes-it is simply not the same.
The result was a bloated implementation” [6]. By not
working inside the kernel Fusyn was able to dictate the
structure of their real time mutex, and the system calls
used to access it.

Fusyn ended up being comprised of four main pieces
fuqueues, fulocks, vlocators, and vfulocks [6]. Of these
pieces the fulock was the base level kernel mutex, and
vfulocks is the userspace glue.

Fusyn is still an active project , however it has never
been accepted into a mainline kernel. The reason for this
is because it created a new blocking primitive which the
kernel already has in semaphores. The fulock doesn’t
replace the semaphores, and has no in kernel users.

9.7 Dave Singleton and Todd
Kneisel’s work

In late 2004 the Preempt Real-Time kernel changes
started. These changes introduced an RT-Mutex, which
included features like Priority Inheritence and Pri-

ority Queuing. The RT-Mutex was also created to be
architecture independent, in contrast with Linux system
semaphores which are architecture dependent. However,
the RT-Mutex was not being exported to user space pro-
cesses which made it strictly an in kernel API . The RT-
Mutex is used to replace a very high percentage of system
semaphores users, something that fulocks is lacking.

In June 2005 Todd Kneisel released code that modi-
fied the current Linux FUTEX implementation to pro-
vide robustness [7]. These changes introduced the
pthread API calls used by Sun Microsystem for robust-
ness. In order to accomplish robustness Todd Kneisel
first had to implement mutex ownership tracking. As
stated earlier, mutex ownership tracking is necessary for
all real time feature.

Dave Singleton originally started working on integra-
tion of the RT-Mutex into FUSYN to replace the fulock.
This turn out the be a very complex. The fulock ap-
peared to be made specifically for use in FUSYN. It did
not seem straight forward to replace it. Eventually and
idea surfaced to integrate the RT-Mutex into the FU-
TEX code incorporating the work from Todd Kneisel as
a base.

The marriage between the RT-Mutex and FUTEX
turned out the be a much more tractable solution. How-
ever, this integration has not been around nearly as long
as FUSYN, so it will likely continue to be in flux. It also
may end up incorporating work from FUSYN .

10 Summary

Real time progress inside the kernel has been moving for-
ward at an incredible pace.

Spin locks have been converted to mutexes, there
are thread-context hard irqs, threaded soft irqs, many
interrupt off section have been removed, in addition to
countless other changes.

The preemption latency of the Linux Kernel has been
reduced by one, to several orders of magnitude, allowing
it to compete head-to-head with subkernel solutions for
Linux, as well as commercial real-time operating systems.

Recently, Ktimers have been introduced into the
real-time patch, allowing real-time tasks to interact with
very low latency to fine-granular high-performance timer
facilities that allow implementation of real-time control
loops achieving unprecedented precision.

Finally, the user-space real-time frontier is giving
way, with a foray into exposing the RT mutex to
userspace via a standard Kernel API. Userspace tasks
are able to leverage efficient priority inheritance, dead-
lock detection, and robust dead-owner lock recovery pro-
tocols.

Its more than enough to make your head spin.

17

We wish to extend our gratitude and special thanks
for patience, understanding, and unabated enthusiam to:

• Dave Singleton

• Doug Niehaus

• Inaky Perez-Gonzalez

• Ingo Molnar

• Kevin Morgan

• Mark Orvek

• Steve Rostedt

• Thomas Gleixner

• Paul McKenney

and many many others who have contributed to the
Real-Time preemption project.

References

[1] Ieee std 1003.1, 2004. http://www.opengroup.org/
onlinepubs/009695399/toc.htm.

[2] Paul Barton-Davis. a joint letter
on low latency and linux, Jun 2000.
http://marc.theaimsgroup.com/?l=linux-
kernel&m=96223850230609&q=raw.

[3] Kevin Dankwardt. Real-time and linux,
part 2: the preemptible kernel, March 2001.
http://www.linuxjournal.com/article/5742.

[4] H. Franke, M. Kirkwood, and R. Russell. Fuss, fu-
texes and furwocks: Fast userlevel locking in linux.
pages 479–495, 2002. http://www.linux.org.uk/
ajh/ols2002 proceedings.pdf.gz.

[5] T. Gleixner. [announce] ktimers subsystem, Sep
2005. http://lkml.org/lkml/2005/9/19/124.

[6] I. P. Gonzales, S. Searty, A. Li, D. P. Howell,
and B. Hu. I would hate user space locking if it
weren’t that sexy... volume 2, pages 403–423, 2004.
http://www.linuxsymposium.org/proceedings/
LinuxSymposium2004 V2.pdf.

[7] T. Kneisel. robust futexes for 2.6.12-rc6, June 2005.
http://lkml.org/lkml/2005/6/15/228.

[8] D. Niehaus, R. Menon, S. Balaji, F. Ansari,
J. Keimig, and A. Sheth. Micro-
second resolution timers for linux, 1997.
http://www.ittc.ku.edu/utime/.

18

	Introduction: Kernel Real-Time Support
	Precedent Work

	Kernel Preemption Background
	Early Linux Kernels (Linux 1.x and Linux 2.0.x / 2.2.x)
	SMP Kernels (Linux 2.x)
	Preemptible Kernel: (Linux 2.4 + Preemption Patch)
	Preemptible Linux 2.6 Kernel
	The Audio Community and Preemption Requirements

	Concurrency in the Uniprocessor Kernel
	Critical Sections
	Critical Section Management
	Protection from other Threads
	Nesting of Critical Sections

	Protection from Interrupt Handlers
	Protection from Threads and Interrupt Handlers
	Critical Section Independence

	Concurrency in the SMP Kernel
	Critical Sections
	Critical Section Management
	Uniprocressor Spin Lock Definition
	SMP Spin Lock Definition

	Spin Lock Operation
	Uniprocressor Spin Lock Operation
	SMP Spin Lock Operation

	Spinlock Contention
	Protection from other Threads
	Protection from Interrupts and Threads

	Summary

	Kernel Preemption Latency Analysis
	Interrupt-Domain Latencies
	Task-Domain Latencies
	Aggregate Preemption Latency in Linux
	Summary
	Conclusion

	The Fully-Preemptible Real-Time Kernel
	Requirements
	Thread-Context Interrupt Handling
	Interrupt Priorities
	Softirq Processing in Thread Context
	Hardirq Processing in Thread Context

	Task-Domain Real-Time Enhancements
	Critical section independence
	Spinlock Substitution

	Performance Impact
	Summary
	Real-Time Kernel Features
	SMP Foundation
	Preemptible BKL

	The Real-Time Mutex
	Priority Inheritance
	Deadlock Detection
	Nested Critical Sections: Mutex and Deadlocks
	Mutex and raw-spinlock Co-existence
	Lock Nomenclature

	Spin-Lock Function Mapping
	PICK_OP Drawbacks

	Mutex Operation
	NON-Preemptible ("Raw") Spinlock Operation
	RT Mutex Operation

	Locking API

	Kernel Timers
	Brief History of Timers
	Linux system timers
	Timer Cascade

	High-Resolution Timers
	High Resolution Timer Design

	Ktimers
	Design of Ktimers

	Robust User-Space Mutex
	Robust Mutex Introduction
	Real Time
	Robustness
	Futex
	Userspace Implementation
	Fusyn
	Dave Singleton and Todd Kneisel's work

	Summary

