
Energy-Aware Scheduling for Real-Time Multiprocessor
Systems with Uncertain Task Execution Time

Changjiu Xian
Department of Computer

Science
Purdue University

West Lafayette, Indiana
cjx@cs.purdue.edu

Yung-Hsiang Lu
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, Indiana
yunglu@purdue.edu

Zhiyuan Li
Department of Computer

Science
Purdue University

West Lafayette, Indiana
li@cs.purdue.edu

ABSTRACT
This paper presents an energy-aware method to schedule
multiple real-time tasks in multiprocessor systems that sup-
port dynamic voltage scaling (DVS). The key difference from
existing approaches is that we consider the probabilistic dis-
tributions of the tasks’ execution time to partition the work-
load for better energy reduction. We analyze the problem
of energy-aware scheduling for multiprocessor with prob-
abilistic workload information and derive its mathemati-
cal formulation. As the problem is NP-hard, we present
a polynomial-time heuristic method to transform the prob-
lem into a probability-based load balancing problem that is
then solved with worst-fit decreasing bin-packing heuristic.
Simulation results with synthetic, multimedia, and stereo-
vision tasks show that our method saves significantly more
energy than existing methods.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies

General Terms
Design, Performance

Keywords
Dynamic Voltage Scaling, Multiprocessor, probability

1. INTRODUCTION
Energy consumption is an important design issue for battery-

operated embedded systems. In these systems, the proces-
sor is a major energy consumer. Embedded systems of-
ten run tasks with real-time constraints. Since dynamic
voltage scaling (DVS) can achieve quadratic energy savings
with only linear decrease of the processor’s speed, combining
DVS with real-time scheduling has been extensively stud-
ied [9] [16] [18] [20] [21]. For real-time tasks with uncer-
tain execution time, the worst-case execution time (WCET)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

must be considered for meeting the tasks’ deadlines. Since
this paper considers frequency and voltage scaling, we use
“execution cycles” instead of execution time to express the
workload of a task. The task’s execution time is the execu-
tion cycles divided by the processor’s frequency.

While most studies on DVS and real-time scheduling are
for a single processor, today’s embedded systems are increas-
ingly based on multiprocessors for higher performance and
lower power consumption. Energy-efficient task scheduling
on multiprocessors therefore becomes an important issue.
Existing studies on multiprocessor real-time scheduling take
two major approaches: (a) partitioning— each task is as-
signed to a particular processor permanently, and (b) dy-
namic scheduling— a global scheduler selects tasks from a
single ready queue to execute and tasks can migrate among
processors. Either approach has its advantage and disad-
vantage [15]. In current multiprocessor systems, the parti-
tioning approach is more common because of its simplicity
and ease of implementation [3]. In this paper, we improve
the energy efficiency under the partitioning approach.

Previous studies have shown that, with DVS, the total en-
ergy consumption of the multiprocessor is minimized when
the workload is balanced among the processors [4] [7]. This
is because of the convex relationship between the processor
speed and the power consumption. These previous studies
take the worst-case execution cycles (WCEC) of tasks as the
workloads. However, if some tasks demand much fewer ex-
ecution cycles in most cases than in their worst cases, the
workloads may be poorly balanced. Even though the WCEC
must be considered to guarantee meeting deadlines, the sta-
tistical distribution of the execution cycles should also be
considered for better balancing. Such statistical informa-
tion can be obtained through offline or online profiling [21].

In this paper, we address the problem of energy-aware
scheduling for multiprocessor with the information of prob-
abilistic distributions. We consider multiple periodic real-
time tasks that execute on a set of identical processors. We
derive the mathematical formulation for minimizing the ex-
pected total energy consumption while meeting the dead-
lines of all tasks with earliest deadline first (EDF) schedul-
ing. As this problem is NP-hard, we present a polynomial-
time heuristic method. First, we transform the problem to
the load-balancing problem based on the cycle distributions
of workloads, assuming that the processors have unbounded
and continuous range of frequencies to choose from. The
worst-fit decreasing bin packing heuristic is used to balance
the load. Second, we modify the solution by including the
maximum frequency as a new constraint and by assuming

664

37.4

bounded discrete frequencies. Our simulation results with
synthetic, multimedia, and stereovision task sets show that
our method saves significantly more energy than the work-
load balancing methods that are based on the worst case.

2. BACKGROUND

2.1 Probability-Based DVS
The probabilistic distribution of cycle demands has been

studied to construct frequency schedules for a single pro-
cessor. Lorch et al. [16] and Gruian [9] derive accelerat-
ing frequency schedules based on probability information.
Yuan et al. [21] implement the accelerating scheduling in
practical systems and show that the probability information
can be obtained through low-overhead run-time profiling.
These studies use the probability information for only intra-
task scheduling. Zhang et al. [22] consider probability-based
scheduling for multiple periodic tasks when they share a
common period. Xian et al. further consider multiple tasks
with different periods on a single processor [19].

2.2 DVS for Multiprocessor
Several previous studies have considered energy-efficient

multiprocessor scheduling with DVS. Zhu et al. [23] propose
a run-time scheme of slack reclamation for tasks sharing a
single, global deadline. Aydin et al. [4] partition periodic
real-time tasks with EDF using worst-case workload infor-
mation. AlEnawy et al. [3] study the partitioning for tasks
that are assigned rate-monotonic priorities. Kadayif et al. [2]
consider the leakage power of multiprocessors and deter-
mine the number of processors needed for executing array-
intensive applications. Chen et al. [7] propose an approx-
imation algorithm to partition tasks with different power
consumption functions. Juang et al. [13] show a coordi-
nated DVS scheme for chip multiprocessor. None of these
studies have taken advantage of the probabilistic workload
information.

2.3 Statistically Optimal Frequency Schedule
Suppose there is a single processor and n periodic tasks.

Let Ki be the ith task. Ki’s period (also the deadline) is Ti

and the execution instance in each period consumes at most
ci cycles. The distribution of cycle demands is expressed
by the cumulative distribution function (CDF), denoted as
Ψ. Since each task may demand millions of cycles, Yuan et
al. [21] suggest dividing the range [0, ci] into mi bins for prac-
tical implementations. Each bin contains an equal number
of cycles bi = d ci

mi
e. Ψ is then a function of bins. The proba-

bility that Ki consumes the jth bin of cycles is 1−Ψi(j−1).
Note that Ψi(0) = 0.

Let fij be the frequency assigned to the jth bin of Ki. The
time for this bin is then bi

fij
. The processor’s power is pro-

portional to v2f and v ∝ f (v: voltage). The energy for this

bin is (v2
ijfij) ×

bi

fij
∝ bif

2
ij , and the expected energy con-

sumption is proportional to the product of the energy and

the probability: bif
2
ij

1−Ψi(j−1)
Ti

. The probability is divided

by Ti because the probability is with respect to Ki’s total
number of instances and it is proportional to 1

Ti
for a given

duration. The optimization problem is to find fij such that
the total expected energy consumption by all tasks is mini-
mized while satisfying the schedulability constraint of EDF.

0 1 2
0
2
4
6
8

Sp
ee

d(
M

Hz
)

Time(Second)
0 1 2

0
2
4
6
8

Sp
ee

d(
M

Hz
)

Time(Second)

0 1 2
0
2
4
6
8

Sp
ee

d(
M

Hz
)

Time(Second)
0 1 2

0
2
4
6
8

Sp
ee

d(
M

Hz
)

Time(Second)

(d)(c)

(b)(a)

K4K3 K2K1

K1 K4K3K2

Figure 1: Frequency schedules from different parti-
tioning methods.

EDF can schedule a set of tasks if the total CPU utilization
is no more than one [14]. The mathematic formulation is

minimize
n

X

i=1

mi
X

j=1

bif
2
ij

1 − Ψi(j − 1)

Ti
(1)

subject to

n
X

i=1

Pmi

j=1
bi

fij

Ti
≤ 1 (2)

Equation (1) is the total expected energy from all tasks.
Equation (2) guarantees the schedulability of EDF. Xian et
al. [19] show that, assuming the processor has unbounded
continuous frequencies, the minimum expected total energy
equals Q3, where Q is as follows.

n
X

i=1

bi

Ti

mi
X

j=1

3
p

1 − Ψi(j − 1) (3)

The minimum is achieved with the frequency schedule:

fij =
Q

3
p

1 − Ψi(j − 1)
(4)

Since 1 − Ψi(j − 1) decreases as j increases, the frequency
fij increases for the later bins in the same task.

3. MULTIPROCESSOR SCHEDULING
This section presents our scheduling scheme for multipro-

cessor systems. We first provide a motivational example to
illustrate the basic concept. Then we formulate the multi-
processor scheduling problem using probability information.
As the problem is NP-hard, we present a polynomial-time
heuristic algorithm in Section 3.4.

3.1 Motivational Example
Consider four periodic tasks K1, K2, K3, and K4 (as

shown in Figure 1), starting at the same time and all have
the same period of 2 seconds. Each task’s deadline is the
same as the task’s period. All tasks have WCEC of 3 mil-
lion cycles, divided into 3 equal-sized bins. Tasks K1 and
K2 always consume 3 million cycles (3 bins). Tasks K3 and
K4 have identical probability distribution: 90% probability
to consume 1 million cycles (the first bin), 5% probability
to consume 2 million cycles (the first two bins), and 5%
probability to consume 3 million cycles (all three bins).

We compare two methods to partition the four tasks be-
tween two identical processors. The first method assigns

665

tasks K1 and K2 to one processor and tasks K3 and K4

to the other. The frequency schedules of these tasks on
each processors are calculated using Equation (4), as shown
in Figure 1 (a) and (b). Both processors have the same
worst-case workloads (3 + 3 = 6 millions cycles) in every
two-second interval. However, considering the probabilistic
distributions of the tasks’ cycle demands, K3 and K4 con-
sume much fewer cycles in most cases than K1 and K2.

Our method assigns K1 and K3 to one processor and K2

and K4 to the other. Since K1 is identical to K2 and K3 is
identical to K4, the workloads on the two processors have
much higher probability of being balanced than the previous
method. The new frequency schedules of the two processors
are shown in Figure 1 (c) and (d). Calculated by Equation
(3), the new method saves 15% more energy than the first
method. This example shows the importance of considering
probability information to balance workloads.

3.2 Task and System Model
We consider a set of periodic, preemptive, and hard real-

time tasks K = {K1, K2, ..., Kn}. All tasks are independent.
Task Ki has the following parameters: (a) Ti is its period
and also the deadline. The task has one execution instance
per period. (b) ci is its WCEC, i.e., the worst-case number of
cycles needed by one execution instance. The range [0, ci] is
equally divided into mi bins and each contains bi cycles [21].
(c) Ψi is the CDF of Ki’s bins and 1 − Ψi(j − 1) is the
probability that the jth bin of cycles is consumed.

The tasks are partitioned among a set of identical proces-
sors C = {C1, ..., Cl}. Each processor has a limited range
of discrete frequencies, denoted as F = {f1, f2, ..., fh} in as-
cending order. The frequency-switch time [21] and context-
switch time [1] are in the microseconds range and the execu-
tion time for tasks is usually in the milliseconds range [22].
Hence, we ignore the frequency-switch time and the context-
switch time. We assume the processors consume both dy-
namic and static power during busy periods and only static
power during idle periods. The dynamic power is propor-
tional to v2f and the static power is a constant. We assume
DVS can adjust only dynamic power so we ignore the static
power because it is constant throughout the whole duration.
Overall, the energy per cycle is proportional to v2f 1

f
∝ f2

since v ∝ f . The scheduling is based on EDF.

3.3 Problem Formulation
We address the following probability-based energy-aware

scheduling problem: Given the task and the system model
as described in Section 3.2, partition the set of tasks K
among the set of processors C and compute the frequency
for each bin of each task based on the bins’ probabilities,
such that (a) the tasks assigned to each processor can be
scheduled using EDF, and (b) the total expected energy
consumption of all processors is the minimum among all the
feasible assignments. As explained in Section 1, we do not
consider task migration among processors in this paper.

Let Sr (r = 1, 2, ..., l) be the set of tasks assigned to pro-
cessor Cr. Then the mathematical formulation of the prob-
lem is as follows.

minimize
l

X

r=1

X

Ki∈Sr

1≤i≤n

mi
X

j=1

bif
2
ij

1 − Ψi(j − 1)

Ti
(5)

subject to
X

Ki∈Sr

1≤i≤n

Pmi

j=1
bi

fij

Ti
≤ 1, r = 1, ..., l (6)

l
[

r=1

Sr = K (7)

Sg ∩ Sh = ∅, g 6= h, 1 ≤ g, h ≤ l (8)

Equation (5) is the total expected energy consumption of

all tasks on all processors, where bif
2
ij

1−Ψi(j−1)
Ti

is the ex-

pected energy consumption of the jth bin of task Ki and
Pmi

j=1 bif
2
ij

1−Ψi(j−1)
Ti

is total expected energy consumption

of Ki. Equation (6) is EDF’s schedulability constraint, where
Pmi

j=1

b
fij

Ti
is the worst-case processor utilization of Ki. For

each processor the worst-case utilization of the assigned task
set should be no more than one. This constraint gurantees
that all tasks meet their deadlines. Equation (7) guarantees
that all tasks are assigned. Equation (8) guarantees that
every task is assigned to only one processor, i.e., for any two
different processors, the intersection of their task sets should
be empty. This problem is NP-Hard because the POWER-
PARTITION [4] can be reduced to this problem. The proof
of the NP-Hardness is omitted due to space limit.

3.4 Polynomial-Time Heuristic Algorithm
In this section, we first consider processors with continu-

ous frequencies between 0 and infinity such that the prob-
lem can be transformed into a load balancing problem based
on the tasks’ probability information. For processors with
bounded discrete frequencies, we further modify the solution
to consider the maximum frequency as a constraint.

3.4.1 Unbounded Continuous Frequencies
The statistically minimal energy consumption (Equation

(3)) of a single processor with a given task set is found by our
previous study [19]. Based on Equations (1), (2), and (3),
Equations (5) and (6) can be combined into the following
equation.

minimize
l

X

r=1

0

B

B

@

X

Ki∈Sr

1≤i≤n

bi

Ti

mi
X

j=1

3
p

1 − Ψi(j − 1)

1

C

C

A

3

(9)

This optimization problem can be transformed into a load

balancing problem. Let Qi = bi

Ti

mi
P

j=1

3
p

1 − Ψi(j − 1). Equa-

tion (9) can be rewritten as
l

P

r=1

(
P

Ki∈Sr

Qi)
3. The Qi value

of task Ki is independent of task partitioning. Let QCr

=
P

Ki∈Sr

Qi. Since
Pl

r=1 QCr =
Pn

i=1 Qi and from Jensen’s

Inequality [12], we have

l
X

r=1

Q3
Cr

≥ l(

Pn
i=1 Qi

l
)3 (10)

This states that the total energy is minimized if QC1
=

QC2
= ... = QCl

=
Pn

i=1
Qi

l
. Since Qis may have different

values and each individual Qi is indivisible, it is not always

possible to make all QCr equal to the constant
Pn

i=1
Qi

l
.

666

Ti (ms) Ψi(1) ∼ Ψi(4) (%) Qi(GHz) Ui

K1 45 5, 15, 25, 100 0.40 0.59
K2 35 85, 90, 95, 100 0.31 0.76
K3 70 35, 50, 65, 100 0.22 0.38
K4 85 80, 90, 95, 100 0.13 0.31
K5 95 90, 95, 99, 100 0.10 0.28

Table 1: Example task set. Each task requires four
million cycles divided into four equal-sized bins.

K1 K2 K3 K4 K5
0

0.1

0.2

0.3

0.4

0.5

Q1
Q2

Q3
Q4 Q5

C1 C2 C3
0

0.1

0.2

0.3

0.4

0.5

Q1
Q2

Q3

Q4
Q5

0

0.1

0.2

0.3

0.4

0.5

Q1
Q2

Q3
Q4 Q5

0

0.2

0.4

0.6

0.8

1

U1

K1

U2

K2

U3

K3

U4

K4

U5

K5
0

0.1

0.2

0.3

0.4

0.5

Q1
Q2

Q3

Q4

Q5

0

0.2

0.4

0.6

0.8

1

U1

C1

U2

C2

U3

C3

U4

U5

Qi (GHz)

Qi (GHz) Ui

(a) (b)

(c) (d)

Figure 2: Partitioning five tasks among three pro-
cessors: (a)(b) Considering only Qi for unbounded
frequencies. (c)(d) Considering both Qi and Ui for
bounded frequencies.

Hence, we minimize the total expected energy by making
QCr as balanced as possible.

We use the worst-fit decreasing (WFD) bin-packing al-
gorithm to balance QCr because WFD has been shown to
be the best bin-packing heuristic for balancing loads among
multiple bins [4]. With WFD, all tasks are sorted by Qi de-
scendingly before packing. Figure 2 (a) shows that the five
tasks described in Table 1 are sorted by Qi in descending
order. Then the tasks are sequentially assigned to the pro-
cessors. Each task is assigned to the processor that has the
least QCr before assigning the task. The packing results are
shown in Figure 2 (b) where the packing order is Q1, Q2,
Q3, Q4, and Q5.

3.4.2 Bounded Discrete Frequencies
In order to schedule the task set assigned to each proces-

sor with the frequency set F = {f1, f2, ..., fh} (in ascending
order), the partitioning method must satisfy the following
constraint: for each processor the worst-case utilization of
its assigned task set at the maximum frequency fh should
be no more than one, i.e.,

X

Ki∈Sr

1≤i≤n

ci/fh

Ti
≤ 1 (11)

Here ci/fh

Ti
is task Ki’s worst case processor utilization at

frequency fh. This constraint means that the task set as-
signed to processor Cr should be schedulable at least when

all bins of the tasks use the maximum frequency fh.
The previous section shows that QCr should be made as

balanced as possible to minimize the total energy. In this
section, we balance QCr under constraint (11). We sort the
tasks by their values of Qi in descending order, as shown in

Figure 2 (c), where Ui = ci/fh

Ti
. The tasks are then sequen-

tially assigned to the processors. When assigning task Ki

to a processor, we pack both Qi and Ui into the processor,
as shown in Figure 2 (d).

Each task should be assigned to the processor with the
least QCr as explained in previous section. However, this
assignment may not be feasible considering the constraint
in Equation (11). In this case, we sort all processors by
their QCr in ascending order and sequentially search for the
first processor where assigning the task is feasible. For ex-
ample, after assigning K1, K2, and K3, we need to assign
K4. At this moment, processor C3 has the least QCr (only
Q3 in C3). Meanwhile, adding U4 to U3 is less than one
so assigning K4 to C3 is feasible. When assigning K5, C2

has the least QCr (only Q2 in C2). However, adding U5

to U2 exceeds one and it is thus infeasible to assign K5 to
C2. Processor C3 has the second least QCr at this moment.
Meanwhile, adding U5 to U3 and U4 is less than one. Hence,
K5 is assigned to C3. This packing method makes QCr as
balanced as possible under the constraint.

After the partitioning, the frequency schedule of each pro-
cessor is calculated using Equation (4). Then we use the fol-
lowing method to restrict the frequency schedule to the set
F . We reassign fh to those bins with frequencies higher than
fh and reassign f1 to those bins with frequencies lower than
f1. For any other bin with a frequency not in the set F , we
replace the frequency using its two adjacent frequencies in F ,
as proposed in [11]. Based on these frequency assignments,

we calculate the worst-case utilization (
P

Ki∈Sr

Pmi
j=1

b
fij

Ti
) for

the processor. If the utilization is larger than one, we need
to raise the frequencies of some bins to reduce the utiliza-
tion. Since raising frequency increases energy consumption,
we should raise the frequencies of those bins with lower prob-
abilities. We first sort the tasks’ bins by their probabilities
ascendingly. Then we sequentially raise the bins’ frequen-
cies to fh until the utilization decreases to be no more than
one. This can be achieved because our partitioning method
satisfies the constraint in Equation (11).

Let m =
Pn

i=1 mi. It is the total number of bins of all
tasks. Calculating Qis and Uis takes O(m) and O(n) time,
respectively. When assigning a task, sorting the processors
by their QCr takes O(l log l) time and sequentially searching
for the first processor that allows a feasible assignment takes
O(l) time. Assigning all tasks takes O(n(l log l + l)) time.
After partitioning, searching for the two adjacent frequen-
cies for all bins’ frequencies takes O(m log h) time (assum-
ing binary search). Finally, sorting the tasks’ bins by their
probabilities takes O(m log m) time and sequentially raising
frequencies takes O(m) time. Overall, our algorithm takes
O(n(l log l + l) + m(log h + log m)) time.

4. SIMULATION RESULTS
This section describes the simulation setup, and presents

the results comparing the energy savings from our method
and three existing solutions.

667

Frequency(MHz) 150 400 600 800 1000
Voltage(V) 0.75 1.0 1.3 1.6 1.8
Power(mW) 80 170 400 900 1600

Table 2: XScale’s frequency/voltage and power.

Application Description T (ms) W ∗

mpegplay MPEG video decoder 30 10,500
madplay MP3 audio decoder 30 899

tmn H263 video encoder 400 165,000
tmndec H263 video decoder 30 12,700
toast GSM speech encoder 25 240

adpcm ADPCM speech encoder 80 6,816

Table 3: Multimedia Applications. ∗ in 103 cycles

4.1 Setup
We use the frequency/voltage settings and power con-

sumption of Intel XScale [20] (Table 2) for each proces-
sor. We use synthetic, multimedia, and stereovision tasks
as benchmarks.

The synthetic task set has 30 tasks and is constructed in
three steps. The first step assigns each task a period ran-
domly chosen between 10 milliseconds and 10 second. The
second step chooses for each task its WCEC randomly be-
tween 100,000 cycles and 500,000,000 cycles with the con-
straint that the task set is schedulable for two 1-GHz pro-
cessors with the WFD heuristic. The third step determines
a distribution function of cycle demands for each task. We
consider two types of distributions, Gaussian and exponen-
tial, for cycle demands as suggested in [20,22]. For Gaussian
distributions, task Ki’s mean µi is randomly chosen within
the range (0, ci] and the standard deviation is σi = ci/6.
Exponential distribution has one parameter λ (µ = 1

λ
, σ2 =

1
λ2). We choose for each task its µi (or 1

λi
) also randomly

within the range (0, ci].
The multimedia task set contains six programs: mpegplay,

madplay, tmn, tmndec, toast, and adpcm, as shown in Ta-
ble 3. The distributions of their cycle demands are obtained
by profiling offline traces. The distributions of these pro-
grams are also studied in [21].

The stereovision task set is based on the stereovision sys-
tem that guides a robot’s motion in real-time [6]. Previous
studies in [17] show that the processor power of a mobile
robot is comparable to its motion power. When the robot is
exploring an environment, it periodically takes stereo pho-
tos and processes them with stereo algorithms to detect or
recognize the surrounding objects. The image processing
should finish before taking the next pair of photos. A robot
can have multiple cameras for detecting the environment.
The typical lens for a camera has a view angle of about
45o [10]. We consider a robot with eight pairs of cameras
facing the eight directions to cover the 360o panorama. The
stereo photos are taken every two seconds and are processed
using the stereo algorithm implemented in [5]. The cycle dis-
tribution of the stereo algorithm is profiled using the stereo-
vision images taken from the image database of the city of
West Lafayette and Indianapolis in the state of Indiana [8].
Figure 3 shows the distribution of the needed cycles for run-
ning the algorithm on 700 pairs of images. Note that there
is great potential for energy savings as the probability of the
WCEC, p(WCEC), is only 0.136%.

We compare four methods to partition workloads and de-

60 65 70 75 80 85 90
0

0.1

0.2

0.3

0.4

0.5

Millions of cycles

PD
F

p(WCEC)
=0.00136

Figure 3: Profiled probability density function
(PDF) of cycles for stereovision computations.

termine execution speeds. WP0 : Tasks are partitioned
based on their worst-case processor utilization and all tasks
are assigned a uniform speed equal to the total CPU de-
mand in the worst-case. We use this method as the baseline
to compare the energy savings from the other three methods.
WP1 : Partitioning considers the worst-case and the execu-
tion speed is determined by runtime slack reclamation [18].
WP2 : Partitioning still considers the worst case and the
probability-based speed scheduling for uniprocessor [19] is
adopted. PP : Tasks are partitioned and assigned speeds
based on their probability information, as explained in Sec-
tion 3.4. This is our method.

4.2 Energy Savings
Figure 4 shows the simulation results. Figures 4 (a), (b),

(c) and (d) show the energy savings from the four task sets.
The energy savings from methods WP1, WP2, and PP with
respect to WP0 are computed for different numbers of pro-
cessors ranging from 2 to the total number of tasks.

Figure 4 shows that WP1 always saves energy (ranging
from 12% to 30%) with respect to WP0. The reason is that:
(a) The partitioning results from WP1 and WP0 are the
same. (b) WP0 uses a uniform speed for all tasks while
WP1 can further lower down this speed by reusing the slack
time upon early completion of task instances. Figure 4 also
show that WP2 saves more energy (ranging from 3% to 17%)
than WP1. The is because WP2 uses probability-based DVS
that proactively minimizes the total expected energy while
WP1 reduces speed only when observing a slack at runtime.
Probability-based DVS saves more energy.

Our method PP saves additional energy compared to WP2,
up to 15.5%, 19.0%, 9.1%, and 14.6% for the four task sets.
This is because PP performs probability-based workload bal-
ancing that is closely coupled with the probability-based
DVS for individual processors. For the multimedia task set,
PP achieves maximum additional energy savings for 2 pro-
cessors and the savings decrease as the number of proces-
sors increases. The reason is that there are only 6 tasks and
the task assignments from PP and WP2 have less difference
when the number of processors approaches 6. For 6 pro-
cessors, both methods assign each processor a single task
so their energy savings are the same. For the stereovision
task set and the two synthetic task sets, the difference be-
tween PP and WP2 first increases and then decreases as the
number of processors increases. This is explained as follows.
WP2 balances the workloads based on Ui instead of Qi. The
effect is that Qi is somewhat randomly packed into the pro-
cessors. When the average number of tasks per processor is
large (e.g., 30 tasks for 2 processors), the difference between

668

5 10 15 20 25 30
0

10

20

30

40

50

Number of Processors

No
rm

al
ize

d
En

er
gy

(%
)

(a) Gaussian

PP
WP−2
WP−1

5 10 15 20 25 30
0

10

20

30

40

50

Number of Processors

(b) Exponential

PP
WP−2
WP−1

2 3 4 5 6
0

10

20

30

40

50

Number of Processors

(c) Multimedia

PP
WP−2
WP−1

2 4 6 8
0

10

20

30

40

50

Number of Processors

(d) Stereovision

PP
WP−2
WP−1

Figure 4: Energy savings from the four task sets: Gaussian, Exponential, multimedia, and stereovision. The
energy savings from methods PP, WP1, and WP2 are with respect to the method WP0.

the processors’ QCr is relatively small compared to the av-
erage of QCr . Consequently, WP2’s energy savings are close
to PP (PP balances the processors’ QCr). When the number
of tasks per processor is relatively small (e.g., 30 tasks for
15 processors), the difference between the processors’ QCr

becomes more significant compared to the average. In this
case, PP saves significantly more energy by balancing the
QCr . However, if the number of tasks per processor is too
small, (e.g., 30 tasks for 25 processors), most processors are
assigned only a single task and the task assignments from
WP2 and PP have little difference so their energy savings
become closer to each other.

5. CONCLUSIONS
This paper presents an energy-aware scheme for task par-

titioning in multiprocessor systems with uncertain work-
loads under hard real-time constraints. We achieve better
workload balancing among multiple processors by utilizing
the probabilistic distributions of the tasks’ execution cy-
cles. Our evaluation shows that our method outperforms
the existing solutions for multimedia applications, stereovi-
sion tasks, and synthetic workloads. The future extension
of this work will consider tasks with dependencies. Both dy-
namic and static power will be reduced by combining DVS
and shutdown strategies.

6. ACKNOWLEDGMENTS
This work is supported in part by National Science Foun-

dation Career CNS-0347466 and CCF-0541267. Any opin-
ions, findings, and conclusions or recommendations are those
of the authors and do not necessarily reflect the views of the
sponsors.

7. REFERENCES
[1] S. Wang, S. Kodase, K. G. Shin, and D. L. Kiskis.

Measurement of OS Services and Its Application to
Performance Modeling and Analysis of Integrated Embedded
Software. In IEEE RTAS, pp. 113–122, 2002.

[2] I. Kadayif, M. Kandemir, and U. Sezer. An Integer Linear
Programming Based Approach for Parallelizing Applications in
On-Chip Multiprocessors. In DAC, pp. 703-708, June 2002.

[3] T. A. AlEnawy and H. Aydin. Energy-Aware Task Allocation
for Rate Monotonic Scheduling. In IEEE RTETAS, pp.
213–223, March 2005.

[4] H. Aydin and Q. Yang. Energy-aware Partitioning for
Multiprocessor Real-time Systems. In IPDPS, pp. 113–121,
2003.

[5] S. Birchfield and C. Tomasi. Depth Discontinuities by
Pixel-to-Pixel Stereo. International Journal of Computer
Vision, 35(3):269–293, December 1999.

[6] A. Broggi, C. Caraffi, R. I. Fedriga, and P. Grisleri. Obstacle
Detection with Stereo Vision for off-road Vehicle Navigation. In
IEEE Workshop on Machine Vision for Intelligent Vehicles,
June 2005.

[7] J.-J. Chen and T.-W. Kuo. Energy-Efficient Scheduling of
Periodic Real-Time Tasks over Homogeneous Multiprocessors.
In PARC, pp. 30–35, September 2005.

[8] S. Gautam, G. Sarkis, E. Tjandranegara, E. Zelkowitz, Y.-H.
Lu, and E. J. Delp. Multimedia for Mobile Users: Image
Enhanced Navigation. In IST/SPIE Symposium on Electronic
Imaging, 2006.

[9] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors. In ISLPED, pp. 46–51,
2001.

[10] Integrated Publishing, Photography.
(http://www.tpub.com/content/photography/14209/index.htm).

[11] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically Variable Voltage Processors. In ISLPED, pp.
197–202, 1998.

[12] J. Jensen. Sur Les Fonctions Convexes Et Les Inegalites Entre
Les Valeurs Moyennes. Acta Math, 30:175–193, 1906.

[13] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark.
Coordinated, Distributed, Formal Energy Management of Chip
Multiprocessors. In ISLPED, pp. 127–130, 2005.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal
of the ACM, 20(1):46–61, January 1973.

[15] J. Lopez, J. Diaz, M. Garcia, and D. Garcia. Worst-Case
Utilization Bound for EDF Scheduling on Real-Time
Multiprocessor Systems. In Euromicro Workshop on
Real-Time Systems, pp. 25–33, 2000.

[16] J. R. Lorch and A. J. Smith. Improving Dynamic Voltage
Scaling Algorithms with PACE. In ACM SIGMETRICS, pp.
50–61, 2001.

[17] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee. A Case Study of
Mobile Robot’s Energy Consumption and Conservation
Techniques. In ICAR, pp. 492–497, 2005.

[18] P. Pillai and K. G. Shin. Real-time Dynamic Voltage Scaling
for Low-power Embedded Operating Systems. In ACM SOSP,
pp. 89–102, 2001.

[19] C. Xian and Y.-H. Lu. Dynamic Voltage Scaling for
Multitasking Real-Time Systems with Uncertain Execution
Time. In GLSVLSI, 2006.

[20] R. Xu, C. Xi, R. Melhem, and D. Moss. Practical PACE for
Embedded Systems. In ACM EmSoft, pp. 54–63, 2004.

[21] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time
CPU Scheduling for Mobile Multimedia Systems. In ACM
SOSP, pp. 149–163, 2003.

[22] Y. Zhang, Z. Lu, J. Lach, K. Skadron, and M. R. Stan. Optimal
Procrastinating Voltage Scheduling for Hard Real-Time
Systems. In DAC, pp. 905–908, June 2005.

[23] D. Zhu, R. Melhem, and B. Childers. Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in
Multi-Processor Real-Time Systems. In RTSS, pp. 84–94, Dec
2001.

669

