
Managing Contention and Timing Constraints
in a Real-Time Database System*

Matthew R. Lehr, Young-Kuk Kim and Sang H. Son

Computer Science Department
University of Virginia

Charlottesville, VA 22903, USA

Abstract

Previous work in real-time database management
systems (R T - D B M S) has primarily based o n simula-
tion. This paper discusses how current real-time tech-
nology has been applied t o architect a n actual RT-
D B M S o n a real-time microkernel operating system.
A real R T - D B M S m u s t confront m a n y practical issues
which simulations typically ignore: race conditions,
concurrency, and asynchrony. The challenge of con-
structing a R T - D B M S is divided into three basic prob-
lems: dealing with resource contention, dealing with
data contention, and enforcing t iming constraints. In
this paper, we present our approaches to each prob-
lem.

1 Introduction

As real-time applications grow more and more com-
plex, so do the ways in which they maintain and access
data. As programs are required to manage larger and
large volumes of data, they typically turn away from
application-specific solutions and seek general, adapt-
able, modular ways to manage data. Conventional
systems use Database Management Systems (DBMS)
to achieve these ends, and DBMS technology is well-
understood. Despite all of its features, however, a con-
ventional DBMS is not quite capable of meeting the
demands of a real-time system. Typically, its goals
are to maximize transaction throughput, minimize re-
sponse time, and provide some degree of fairness. A
RT-DBMS, however, must adopt goals which are con-
sistent with any real-time system: providing the best
service to the most critical transactions and ensuring
some degree of predictability in transaction process-
ing.

"This work was supported in part by ONR.

The StarBase RT-DBMS is an attempt to merge
conventional DBMS functionality with real-time tech-
nology. StarBase supports the relational database
model and understands a simple SQL-like query lan-
guage. The DBMS maintains a centralized server
to which local or remote clients submit transactions.
Transactions may execute concurrently and serializ-
ability is the correctness criterion. In addition to this
conventional functionality, StarBase seeks to minimize
the number of high-priority transactions that miss
their deadlines. StarBase uses no a priori information
about transaction workload and discards tardy trans-
actions at their deadline points. In order to realize
many of these goals, StarBase is constructed on top of
RT-Mach, a real-time operating system developed at
Carnegie Mellon University [ll]. StarBase differs from
previous RT-DBMS work [l, 2, 31 in that a) it relies on
a real-time operating system which provides priority-
based scheduling and time-based synchronization, and
b) it deals explicitly with data contention and dead-
line handling in addition to transaction scheduling, the
traditional focus of simulation studies.

There are essentially three problems with which
RT-DBMSs must deal: resolving resource contention,
resolving data contention, and enforcing timing con-
straints. As with other real-time systems, tasks to
be performed are stratified according to their relative
importance to the system. Priority combines this rel-
ative importance with task timing constraints to pro-
vide a means to decide which of many tasks should
be scheduled at any given moment. The intent is to
always grant the highest priority tasks access to re-
sources (CPU, critical sections, etc.). Similarly, Star-
Base considers each transaction a task in its own right
and seeks to provide the best service to the highest
priority transactions. The rest of this paper is de-
voted to addressing how StarBase allocates resources
to the highest priority transactions and how it enforces
timing constraints.

332
1052-8725/95 $04.00 0 1995 IEEE

SeMR Port sources in a consistent and orderly fashion. To prevent
mayhem, two of the resource managers are organized
as monitors to synchronize the actions of different
transactions. The services of the RIOMgr, however,
are explicitly synchronized by the CCMgr.

StarBase uses optimistic concurrency control to en-
sure data consistency, allowing transactions to proceed
unhindered until they are ready to apply their updates
to the database. The particulars of the concurrency
control algorithm are detailed in Section 4.

3 Resource Contention and Transac-
tion Scheduling

For decades the major trend in computing has been
to increase efficiency by sharing resources. By provid-
ing the abstraction of processes (threads of execution)
and a single software entity to control access to re-
sources such as the CPU, memory, and disk, comput-
ers provide the illusion of the concurrent execution of
different tasks in an orderly fashion. The ultimate

Figure 1: StarBase Server Architecture

2 Database Overview

The StarBase DBMS is organized as a multi-
threaded server as shown in Figure 1. It is assumed
that datababse clients are physically disparate from the
server, so they pass messages to communicate with the
DBMS server. Transaction requests are sent via RT-
Mach’s Inter-Process Communication (IPC) mecha-
nism and are queued at the server’s service port. RT-
Mach provides a naming service with which StarBase
registers its service port during initialization. Clients
look up the service port by querying thle name server
with StarBase’s well-known name.

When a request enters service, a transaction man-
ager thread of execution is charged with ensuring it
is properly processed. The transaction manager ex-
ecutes the appropriate operations (e.g., read, write)
as dictated by the content of the request. At the
start of transaction processing, the transaction man-
ager starts a deadline manager thread, whose behavior
is discussed in Section 5, to enforce the transaction’s
deadline. A, transaction needs certain resources to ex-
ecute, including mechanisms to acquire memory, read
and write data from relations, and ensure that data re-
mains consistent. StarBase’s three resource managers
provide these services: the Small Memory Manager
(MemMgr), the Relation 1/0 Manager (RJOMgr), and
the Concurrency Controller (CCMgr). Each resource
manager must ensure that transactions access their re-

arbiter of resources is the operating system, which is
charged with resolving which thread of execution gets
a particular resource at any given time. Since they are
designed to interact with humans, the goals of con-
ventional systems, by and large, are to achieve fair-
ness and minimize response time. Real-time systems,
however, are designed for embedded environments and
require quick and predictable behavior in response to
external mechanical and electrical stimuli. Tasks that
a real-time system must perform are ranked accord-
ing to their importance and the most critical tasks are
given the best access to resources to ensure the highest
probability of completing on time.

As with any application, the StarBase RT-DBMS
is highly reliant on its native operating system, RT-
Mach, to provide the priority-cognizant services nec-
essary for real-time resource scheduling. RT-Mach’s
services in turn are based on two major ideas (among
others) which have been developed to ensure the allo-
cation of resources to more important tasks in real-
time systems. Those ideas are priority-based CPU
scheduling [7] and the Basic Priority Inheritance Pro-
tocol (BPI) [9] for non-preemptible resources. With
both ideas, tasks to be performed are ranked by their
relative priorities (a function of their criticality and/or
feasibility), and the highest priority tasks are granted
access to the resource in question. RT-Mach provides
several priority-based scheduling regimes, including
Fixed Priority, Earliest Deadline First, Rate Mono-
tonic, and Deadline Monotonic. RT-Mach’s real-time

333

thread model [ll] distinguishes real-time threads of
execution hom ordinary ones, requiring the explicit
specification of timing constraints and criticality on
a per-thread basis. The timing and priority informa-
tion is then used as input to the RT-Mach scheduler.
RT-Mach also has striven to implement priority-based
resource scheduling through its interprocess communi-
cation (RT-IPC) [5] and thread synchronization (RT-
Sync) [lo] facilities. RT-Mach implements BPI itself
as a combination of priority queuing and priority in-
heritance. When a thread blocks on a mutex variable
or when a message cannot be immediately received be-
cause all potential receivers are busy, RT-Mach queues
the waiting thread or message in priority order and
then boosts the priority of the thread inside the critical
section or the priority of one of the potential receivers
in accordance with the BPI protocol.

StarBase employs RT-Mach’s priority-based CPU
and BPI resource scheduling in several ways: to de-
termine the transaction service order, to provide high-
priority transactions the means to progress faster
than low-priority transactions, and to provide priority-
consistent access to facilities such as the Small Mem-
ory Manager and Concurrency Controller. For pur-
poses of uniformity, StarBase adopts the same data
type that RT-Mach uses to convey priorities, facili-
tating the straightforward translation of StarBase to
RT-Mach priorities. Since the priority data type,
r t -pr ior i ty- t , includes a wide range of criticality
and timing information, major changes in schedul-
ing policy (e.g., Fixed Priority to Earliest Deadline
First) are reduced to simple changes in the functions
which compare priorities (e.g., changing the compar-
ison of criticalities to one of deadlines) without any
change in the client/server interface. StarBase itself
must make priority-based decisions (e.g., concurrency
control), so its priority-based comparisons involve pri-
orities expressed as rt-priority-t-typed values. Of
course, which policy is most appropriate differs from
application to application, so the policy to be used is
left as a compile-time constant. Naturally, StarBase
must use a consistent transaction scheduling policy
across all of its priority-based decisions.

3.1 Transaction Service Order

Since performance ultimately degrades as the num-
ber of threads of execution in a system increases, and
lazy allocation of resources adds unpredictability to
the system, StarBase maintains only a fixed number
of preallocated transaction manager threads. At the
same time, since the StarBase DBMS has no a priori
knowledge of transaction workload, more transactions

may be submitted to the DBMS than it can handle at
any given time. In order to throttle the flow in such
circumstances, StarBase needs a mechanism to decide
which requests to admit into service, and RT-Mach’s
RT-IPC facilities do just that in a convenient and
priority-cognizant manner. To submit a transaction
to the StarBase DBMS, a client places the transaction
instructions and priority information into a message
and uses RT-IPC to send the message to the DBMS
server. Since RT-IPC queues incoming messages in
priority order, the next available transaction manager
receives the next highest priority unreceived message.
Requests are therefore served in priority order and
only the highest priority outstanding requests are in
service at any given time. If a high priority transac-
tion request cannot be serviced immediately because
all transaction manager threads are busy serving some
lower priority requests, RT-IPC’s priority inheritance
expedites one or more of the transaction managers so
that the high priority request enters service at a time
bounded by the minimum of the in-service transaction
deadlines.

Once transactions enter service, StarBase needs
to ensure that high priority transactions progress as
quickly as possible. Since transactions require real-
time execution, StarBase creates one real-time thread
for each transaction manager and relies on RT-Mach’s
real-time CPU scheduling to schedule them. Transac-
tion manager priorities are not specified explicitly by
StarBase, however. Each obtains the correct priority
assignment automatically upon receipt of a new trans-
action via RT-IPC’s priority handoff mechanism [5].

3.2 Memory Manager

Transactions, depending on the nature of their op-
erations, require some dynamic allocation of memory
during their execution. StarBase maintains a Small
Memory Manager to allocate and manage dynamic
memory. Since transaction managers of different pri-
orities may attempt to use it simultaneously, entry
into the Small Memory Manager is guarded by a real-
time mutex variable to avoid the priority inversion
problem and to ensure the heap is accessed in mutual
exclusion. To provide (relatively) predictable access
to memory allocated through the manager, the heap
is wired so that it cannot be paged out of physical
memory.

3.3 Concurrency Controller

Although the StarBase concurrency controller is re-
sponsible for resolving contention at a higher level

334

(i.e., data contention), it still relies on RT-Mach to
provide basic synchronization and avoid the priority
inversion problem. In particular, the concurrency con-
troller must keep its own data structures consistent
and ensure that transaction commits occur without
interference. As such the concurrency controller is or-
ganized as i t monitor, with a single real-time mutex
vaxiable for the monitor lock, and one real-time con-
dition variable for each transaction manager. The pre-
cise function of the concurrency controller is detailed
in the next section.

4 Data Contention and Concurrency
Control

In addition to resources such as the CPU and mem-
ory, transactions compete for access to the data stored
in the database. To obtain reasonable performance, a
DBMS must, allow multiple transactions to access data
concurrently while requiring that the out,come appears
as if it were the result of a serial execution of those
transactions. Satisfying these two goals produces a
problem which is quite distinct from ordinary con-
tention for operating system resources: contention for
data. To resolve data conflicts, StarBase uses a con-
currency control implementation which draws heavily
from the work of two research groups. First, Har-
itsa reasoned that optimistic concurrency control can
outperform lock-based algorithms in a firm real-time
setting [2]. He then developed a real-time optimistic
concurrency control method, WAIT-X(S), which he
found empirically superior, over a wide range of re-
source availability and system workload levels, to a
previously proposed real-time lock-based concurrency
control method called 2PL-HP [2]. Second, Lee and
Son devised an improvement to the conflict detection
of optimistic concurrency control in general, which
StarBase integrates with Haritsa’s WAIT-X(S) [6].

4.1 WA tT-X(S)

WAIT-X is optimistic, using prospectlive conflict de-
tection and priority-based conflict resolution. WAIT-
X’s conflict detection is prospective in the sense that it
looks for conflicts between the validator and transac-
tions which may commit sometime in the future (i.e.,
running transactions). Prospective conflict detection
is also referred to as forward validation. The atten-
dant advantages of the prospective method are that
potential conflictors are readily identifiable, dataset
comparisons are simplified, and conflicts are detected

much earlier in the execution history. Real-time op-
timistic methods are precluded, however, from ret-
rospective (or backward validation) conflict detection,
which compares the validator to transactions which
committed in the recent past. Since all the transac-
tions which conflict with a validator have committed,
there is only one outcome in the face of irreconcilable
conflict: abortion of the validator regardless of its pri-
ority relative to its conflictors. Prospective conflict
detection, on the other hand, allows the concurrency
control to choose between aborting the validator or all
of its conflictors in a priority-cognizant manner.

When WAIT-X detects conflicts between a valida-
tor and some running transactions, it can choose one
of three outcomes for the validator. It may abort the
validator, it may commit the validator and abort the
conflictors, or it may delay the validator slightly in
the hope that conflicts resolve themselves in a favor-
able way. Which course of action to take is a func-
tion of the priorities of the validator and conflictors.
In particular, Haritsa divides the conflictors into two
sets: those conflictors with higher priority than the
validator (CHP), and those with lower priority (CLP).
WAIT-X blocks the validator until. the CHP transac-
tions comprise less than a critical portion, X%, of the
conflict set:

while (CHP transactions in the conflict set
and CHP transactions comprise greater
than X% of the conflict set) do

wait;
end
abort the conflict set;
commit the validator;

Haritsa found experimentally that low values of
X tend to minimize the deadline miss ratio for light
loads, and high values of X tend to minimize the dead-
line miss ratio for heavy loads. He established X =
50% as the threshold value which minimizes the over-
all deadline miss ratio, but applications which require
minimization of the highest-priority deadline miss ra-
tio must use a greater value for X.

The final aspect of the WAIT-X method deals with
handling the abort of the transaction should WAIT-X
block it until its deadline. Haritsa claims that trans-
actions which run up against their deadlines while
waiting can either be immediately sacrificed by abort-
ing (WAIT-X(S)) or committing (WAIT-X(C)). Sac-
rifice is preferred over commit since waiters are more
likely to be lower priority than most of their conflic-
tors. More importantly, however, commission at the
deadline point would effectively extend the execution
of a transaction past its deadline, so WAIT-X(C) is

335

not practical for systems requiring firm real-time con-
straints such as StarBase.

4.2 WAIT-X(S) Implementation

The StarBase concurrency control unit imple-
ments Haritsa’s WAIT-X as a monitor and is a
more active entity than other typical concurrency
controllers. The Concurrency Control Manager
(CCMgr) opens and closes relations on behalf of ex-
ecuting transactions, performs write-throughs to the
database, handles asynchronous aborts, and elimi-
nates a potential race condition between the com-
mission of a transaction and the expiration of its
deadline. Transaction managers use the six ser-
vices provided by the CCMgr (RegisterTransaction,
RegisterRelationReference, UpdateReadSet/WriteSet,
Validate, DeadlineAbort, and Abortself) by calling
the corresponding monitor entry procedure. Each
monitor entry procedure locks the CCMgr monitor
lock to gain access to the monitor and unlocks the
monitor lock when exiting. The monitor lock itself is
implemented as an RT-Mach mutex variable to con-
trol priority inversion between contending transaction
managers. Once inside the monitor, of course, opera-
tions proceed in a mutually exclusive fashion.

Although on paper WAIT-X consists of a simple
test to determine whether a transaction waits or com-
mits, in practice, the test is actually a trigger whose
truth value can change at any instant as transactions
enter (by reading relations) and exit (by aborting) the
validator’s conflict set. The CCMgr is a synchronous
modification of the asynchronous WAIT-X test, where
the validation state corresponds to the testing the trig-
ger, the wait state corresponds to the loop body, and
the committed state corresponds to the statements
after the while loop. Note that validators may be
aborted while in the wait state either due to the com-
mitment of other validators or due to the expiration
of the validator’s deadline.

As previously mentioned, the composition of a val-
idator’s conflict set may change from instant to in-
stant. The most frequent case, when a running trans-
action advances in its read- or writeset, is expensive
to check because of its frequency and because of the
size of the read-/writeset data structures. The CCMgr
limits checking the trigger condition to cases where it
is reasonably sure conflict sets have changed: when
a transaction enters validation for the first time and
when a transaction aborts. Note that in this scheme a
particular transaction’s wait in the CCMgr is strictly
bounded by its deadline and waiting transactions retry
validation by the earliest deadline of all transactions in

validating committed

/ + I

Figure 2: WAIT-X(S) State Diagram

the system (subject to the availability of the processor
to the transaction with earliest deadline). In order to
give precedence to the highest priority transactions, all
waiting transactions retry validation in priority order
(Figure 2).

As is typical, reads and writes are recorded in
bitmaps for each relation a transaction references.
Comparison of the read- and writesets of transactions
during conflict identification can then be expedited by
performing a word-wise logical AND on bitmap pairs
to detect any overlaps. Since WAIT-X uses prospec-
tive validation, only the readset of a potential conflic-
tor need be compared to the writeset of the valida-
tor: the potential conflictor is still running so none
of its writes are visible to the validator. Prospective
validation’s conflict detection is simple and relatively
low-cost, but it can be improved upon. A method
to augment WAIT-X(S)’s conflict detection scheme is
discussed in a later section.

When the CCMgr computes the conflict set for
a given validator, it tallies CHP and CLP transac-
tions. To determine the priority of a conflictor rela-
tive to the validator, the CCMgr employs a function
of transaction priorities (using RT-Mach’s own data
type, r t -p r io r i ty - t) which returns TRUE if the first
transaction is of higher priority than the second. Note
that this function is the same one employed to en-
sure transactions retry validation in priority order, but
StarBase ensures at compile time that it is consistent
with the CPU scheduling regime under which Star-
Base is configured to run. Once the CHP and CLP
have been determined, the CCMgr decides whether
the validator can commit or must remain on the wait-
ing list. If the validator commits, the CCMgr sched-
ules aborts for transactions in the validator’s conflict

336

set.
The wait state itself is implemented by associat-

ing an RT-Mach real-time condition variable appropri-
ately called waiting with each transactiton. When the
CCMgr deciides that a validating transaction should
wait, the transaction manager is enqueued on a queue
of other waiting transactions and suspended on its
condition variable. This in turn releases the CCMgr
monitor loclk and allows other transaction managers
to use CCMgr services. The suspended transaction
manager is subsequently resumed when another trans-
action manager calls into the CCMgr to validate or
abort. At that point all transactions in the wait
queue are retried individually in priorii,.y order and if
the CCMgr decides that one in particular commits or
aborts, it signals the corresponding waiting condition
variable, unblocking the formerly suspended transac-
tion manager.

4.3 Precise Serialization

Precise serialization is a conflict-detection scheme
for optimistic concurrency control [6]. The goal of
precise serialization is to identify transaction con-
flicts which strict prospective conflict detection con-
siders irreconcilable but can actually be resolved with-
out aborting the transactions involved. StarBase re-
places the prospective conflict detection portion of the
WAIT-X(S) scheme with Precise Serialization so that
WAIT-X(S) can still enforce transaction serializability
while incurring fewer transaction aborts and decreas-
ing the likelihood of missing transaction deadlines.

In particular, Lee identified the case where a valida-
tor, Tv, attempts to commit and write a data item x
which another uncommitted transaction TCR has read
but not written. Lee terms data conflicits of this type
wrzte-read confEzcts. As mentioned previously, strict
prospective validation checks the writeset of the val-
idator against the readset of its potenti a1 conflictors,
identifying write-read conflicts. If it detects such a
conflict, the resolution requires aborting some of the
conflicting i,ransactions. Note, however, that if TCR
were to commit first, there would be 110 conflict on
data item r. Haritsa noticed the same problem and
describes part of the rationale behind the priority wait
scheme of ’WAIT-X as a passive attempt to induce
transaction:; to reserialize themselves in a nonconflict-
ing order. Lee’s Precise Serialization takes a more
deterministic tack: it allows TV to commit while TCR
is still running, but requires TCR to behave as if it had
committed before Tv. TCR is constrained so that it
cannot read any data item written by TV because it
would see at “future” value, and it cannot write any

data item read by Tv since TV has committed and
cannot change the past. Finally T& must discard (as
late writes) updates to any data items which TV wrote
during its commit. This pseudo-reserialization of TV
and TCR is called backward ordering and its goal is to
increase the probability that potential conflictors can
complete without either aborting and restarting.

4.4 Precise Serialization Implementation

Since Precise Serialization is a conflict-detection
scheme, not a full-blown method of concurrency con-
trol, it supplements StarBase’s WAIT-X implementa-
tion rather than replacing it entirely. Precise Serial-
ization modifies the WAIT-X validation conflict de-
tection and requires the addition of a mechanism to
detect when a pseudo-reserialized transaction does not
behave in accordance with its virtual order in the ex-
ecution history.

During validation, Precise Serialization partitions
the set of conflicting transactions into those which con-
flict reconcilably and those which conflict irreconcil-
ably. Should the validator be allowed to commit, the
reconcilable conflictors must be pseudo-reserialized by
backward ordering, while the irreconcilable conflictors
must be aborted. To keep track of which are which,
StarBase maintains a reserialization candidate set for
the validator in addition to the conflict set of the
WAIT-X implementation described previously. The
conflict set still identifies which transactions conflict
irreconcilably with the validator, but the candidate set
identifies precisely those datasets among which recon-
cilable write-read conflicts exist.

To construct the candidate set and the conflict set
at the point of validation, the CCMgr cycles through
each dataset referenced by the validator, Tv. If TV
has only a write-read conflict with an uncommitted
transaction, TCR, on a dataset, then the serialization
order should be TCR -+ TV (backward validation)
and the conflicting datasets are added to the reseri-
alization candidate set. If TCR has only a write-read
conflict with Tv, then the serialization order should
be Tv -+ TCR (forward validation). In this case TV
and TCR are considered to be non-conflicting. If the
CCMgr determines that the serialization order should
be simultaneously TCR -+ TV and TV -+ TCR, then
TV and TcR are irreconcilably conflicting, and TCR
is added to the conflict set. Note that the CCMgr
does not consider write-write conflicts since transac-
tions are required to read tuples to determine their val-
ues or to establish that they are empty before writing
them. Consequently a writeset is always a subset of
the readset (for a given transaction and relation) and

337

checking both against a potential conflictor’s writeset
is redundant.

Once the candidate set and conflict set are com-
pletely identified, the CCMgr determines whether
the validator should commit or wait according to
the WAIT-X commit test. If the validator waits,
the conflict and candidate sets are discarded-they
will be recomputed if and when the validator retries
validation. If the validator commits, the transac-
tions in the conflict set are aborted and the CCMgr
must pseudo-reserialize the reconcilable conflictors.
Pseudo-reserialization is achieved by attaching copies
(or remnants) of TV’S datasets to those datasets with
which they conflict. Note that these dataset pairs are
precisely those comprising the reserialization candi-
date set. Thus when a conflictor later updates its read-
and writesets, it can quickly check whether the opera-
tion violates its virtual order in the execution history
by consulting the dataset remnants attached to the
dataset involved in the operation.

Since one of TV’S datasets may conflict with more
than one of the conflictors’, a remnant is given a refer-
ence count rather than physically copied. As conAic-
tors commit or abort one by one, the CCMgr decre-
ments the reference count. When the last conflictor
terminates, the CCMgr discards TV’S dataset rem-
nant.

In the same token several transactions may commit
even though they conflict with a particular transac-
tion, TCR. The dataset remnants of these transactions
attached to TCR axe collectively known as the recently
committed conflicting datasets (or RCCs). Pseudo-
reserialized transactions such as TCR must check each
remnant in the RCCs for a given dataset whenever
they read or write to that dataset. As previously men-
tioned, TCR cannot read anything marked as written
in its RCCs, since it would read a [‘future’’ value. In
most cases TCR cannot write anything marked as read
in its RCCs, since it would write a “past” value. The
exception occurs when TCR writes a data item that
Tv has also written, in which case TCR’S write is dis-
carded as a late write. The net result is that only the
value that TV wrote is visible, consistent with the ex-
ecution history TCR + Tv. Unfortunately StarBase’s
update operation may use past values to compute new
ones, precluding the use of late writes for it. The only
situation in which the late write phenomenon can be
used is one in which the reserialized operation is sup-
posed to have been performed before a delete. Since
delete is idempotent, the reserialized operation can be
correctly discarded.

5 Enforcing Time Constraints

Each StarBase transaction is accompanied by a
deadline specification. Since StarBase is a firm RT-
DBMS, it attempts to process the transaction and
reply to the application at or before this firm dead-
line; no processing should occur after the deadline.
Firm deadline transactions may be contrasted with
soft deadline transactions which are viewed as having
some usefulness even if their execution extends be-
yond the deadline point. Hard deadline transactions
are those transactions whose failure to execute on time
is viewed as catastrophic.

5.1 Deadline Management

The first step in enforcing firm deadlines is de-
tecting exactly when the deadline expires. As with
other real-time functionality, StarBase relies heavily
on the RT-Mach operating system to provide support-
ing mechanisms. RT-Mach provides the concept of a
real-time deadline handler, a separate thread of execu-
tion which performs application-specific actions when
the deadline expires. Typical actions are to abort the
thread (firm deadline) or lower its priority (soft dead-
line). In addition to RT-Mach’s real-time threads,
implementation of a deadline handler requires time-
based synchronization. In order to ensure the han-
dler action is ready to execute before the deadline,
the real-time deadline handler must be eagerly allo-
cated as a real-time thread to execute the deadline
handler code. The deadline handler thread then uses
a real-time timer to block the thread until the dead-
line expires. A real-time timer is an RT-Mach ab-
straction which allows real-time threads to synchro-
nize with particular points in time as measured by
real-time clock hardware devices [8].

RT-Mach provides a default deadline handler con-
structed from the building blocks discussed above, but
it is inadequate for StarBase’s purposes. First, the de-
fault deadline handler supports only threads with uni-
form deadlines. StarBase, since it assumes no a priori
information about its transaction workload, requires
that its deadline handlers adapt to new transactions
and their deadlines as they enter service. Secondly, a
RT-Mach default deadline handler forcibly suspends a
thread when it misses its deadline so that the thread
does not interfere with the handler’s execution. If a
thread misses its deadline while in the middle of a crit-
ical section, it is suspended and cannot leave the criti-
cal section until it is resumed. StarBase uses a critical
section to resolve potential race conditions between
transaction commit (by the transaction manager) and

338

deadline abort (by the deadline manager), so use of
a RT-Mach-style deadline handler can result in dead-
lock. Thirdly, default deadline handlers do not allow
the transaction and deadline managers to synchronize
cooperatively. A deadline manager must know when
a transaction completes so that it does not generate a
useless abort; a transaction manager must know when
the deadline expires, so that it does not commit the
aborted transaction. Neither is possible without some
shared state which must be accessed in mutual exclu-
sion.

5.2 Deatdline Management Iimplementa-
tion

The solution, then, is to devise a deadline han-
dler implementation which handles variable deadlines,
avoids potential deadlocks, and is eagerly allocated to
provide some degree of predictability but at the same
time takes]precedence over the transaction it manages
when the transaction deadline expires.

As mentioned in Section 3, RT-Mach provides real-
time thread synchronization facilities. Each trans-
action and deadline manager pair can be synchro-
nized using RT-Sync to construct a monitor with two
real-time condition variables, newTransact i on and
dmgrcancel. The transaction manager must be sure
that the deadline manager is ready to enforce a new
deadline blefore a new transaction xrives, and the
deadline manager must be sure the tratnsaction man-
ager has received a new transaction before it prepares
for the new deadline expiration. The condition vari-
able newTransaction is used both to wait when one of
the managers lags behind the other and to signal the
arrival of a new transaction to the deadline manager.

The condition variable dmgrCance1 is used much
differently. The deadline manager must simultane-
ously block waiting for the deadline to expire or to
be cancelled by the transaction manager, whichever
comes first. Since RT-Mach provides a time-out on
its real-time condition variables, the deadline manager
need only wait on dmgrcancel, providing the deadline
as the time-out value, to block until the deadline. Fur-
thermore, should the transaction manager complete
the transaction, it can cancel the deadline manager
by signalling on dmgrcancel.

The transaction and deadline manager behaviors
are presented in Figures 3 and 4. This solution allows
the deadline handler to deal with deadnines which vary
from transaction to transaction since the transaction
and deadline managers synchronize before a transac-
tion enters service. The use of a monitor to synchro-
nize the transaction and deadline managers also avoids

rt-mutex-t monitorlock;
rt-condition-t newTransaction;
message- t request;
bo olean- t tmgrReady = FALSE;

while (TRUE)

rt-mutex-lock (monitorLock, NULL) ;
tmgrReady = TRUE;
if (dmgrReady == FALSE)
c

if (dmgrArmed)

rt-condition-wai,t (newTransaction, NULL);
rt-condition-signal (dmgrcancel) ;

1
mach-msg-receive (request);
rt-condition-signal (newTransaction);
tmgrReady = FALSE;
rt-mutex-unlock (monitorLock);
/* execute transaction */

Figure 3: Transaction Manager

the deadlock possible were the deadline manager capa-
ble of explicitly suspending the transaction manager.
Another implementation of the deadline handler in-
volves creating and destroying the deadline manager
at the beginning and end of each transaction. Eagerly
allocating the deadline manager thread, however, re-
duces the amount of variability in transaction service
times, providing an increased degree of predictability.

Finally, the easiest goal to achieve is that of the
deadline manager taking precedence over its trans-
action manager. Since the deadline handler's exe-
cution is considered more critical than the transac-
tion's when the deadline expires, the deadline handler
should be assigned a higher priority so that RT-Mach
gives it preferential scheduling relative to the trans-
action whose deadline it handles. At the same time,
the execution of the deadline handler should not cause
priority inversion by interfering with the transaction
managers of higher priority transactions. In order for
the deadline handler to function as desired, it should
have a slightly higher criticality and slightly tighter
timing constraints than its corresponding transaction
manager, but a lower criticality and looser timing con-
straints than transaction managers for higher priority
transactions.

Fortunately, the criticality and time spaces are both
very large in RT-Mach (at least 2" where n is the num-
ber of bits in a word). Furthermore, real-time CPU
and resource scheduling generally make decisions on

339

rt-condition-t dmgrcancel;
boolean-t dmgrArmed = FALSE;
boolean-t dmgrHeady = FALSE;

(External) Transaction Deadline
Type Il-ansaction Manager Manager

L Priority Priority Priority
criticality C 2 * c + l 2 * c

timing

(nsec)
constraints t t t - 1

rt-mutex-lock (monitorLock, NULL) ;
while (TRUE)

contention is resolved through it. As described in Sec-
tion 4, the CCMgr is a monitor and threads execut-
ing inside of it are capable of atomically determining
whether a transaction is in the process of committing
or not.

When the deadline expires and the deadline man-

if (tmgrReady)
rt-condition-signal (newTransaction) ;

dmgrReady = TRUE;
rt-condition-wait (newTransaction, NULL);
dmgrHeady = FALSE;
dmgrAmed = TRUE;
status =
rt-condition-wait (dmgrcancel,

request.deadline);
dmgrArmed = FALSE;
if (status == KERN-SUCCESS)

/* abort transaction */
rt-mutex-lock (monitorLock) ;

continue ;

Figure 4: Deadline Manager

Although time is viewed as continuous and real-
valued, RT-Mach's ability to measure it is limited by
its clock hardware resolution. RT-Mach, therefore,
maintains a data type which represents discretized
time in terms of nanoseconds, though its clocks mea-
sure time with significantly lower precision. Tighter
timing constraints for the deadline manager are gotten
by adding one nanosecond to each timing constraint
of the corresponding transaction manager. Thus while
the timing constraints for the transaction and deadline
manager threads are not appreciably different as mea-
sured by the hardware clock, scheduling regimes such
as Earliest Deadline First will still schedule the dead-
line manager in preference to the transaction manager.

5.3 Asynchronous Aborts

As previously discussed, firm deadlines are handled
asynchronously by a deadline handler which is charged
with aborting the thread in question. In StarBase, the
asynchrony between transaction and deadline man-
agers results in a race condition between the com-
mit, and deadline abort of a transaction. The concur-
rency controller (CCMgr) is the authority which per-

Figure 5: Thread Priority Assignments

which thread to run by simply comparing priorities
without quantifying how much they differ. The large
priority space and the qualitative priority comparisons
allow StarBase to niap the external transaction prior-
ities onto new priorities at which the transaction and
deadline manager real-time threads actually run.

The RT-Mach criticality priority space consists of
unsigned integers, with 0 being the highest criticality
and 2"-1 being the lowest. The transaction and dead-
line manager thread criticalities supplied to RT-Mach
are gotten by doubling the external transaction prior-
ity and adding one to the transaction manager criti-
cality. A deadline manager thus always has a greater
criticality than its own transaction manager thread
but has a lesser criticality than that of the next high-
est criticality transaction, as illustrated in Figure 5.

C%IZ/Igr. If the transaction has not yet committed,
the CCMgr marks the transaction as aborted and dis-
allows it as a potential conflictor with other validators
by unlinking it from CCMgr internal data structures.
How the CCMgr subsequently notifies the transaction
manager of the abort depends on the state of the trans-
action. If the transaction has not yet entered valida-
tion, the transaction manager is notified the next time
it updates its read- or writesets; if the transaction has
entered validation (i.e., entered the wait state), the
CCMgr resumes the transaction manager according to
the mechanism described in Section 4 with the status
that it has failed validation.

In addition to the race condition between the com-
mit and abort of a transaction, there is another race
condition between simultaneous aborts. For example,
a transaction may discover a semantic error (e.g., re-
lation not found) near the point where the deadline
expires or a transaction may abort due to conflicts
during validation. Because of the different natures
of these aborts, different actions are required on the

340

part of StarBase. The CCMgr again arbitrates which
one of mulliple aborts takes precedence. The most
important is the deadline abort which supersedes all
other aborts in order to expedite replying to the client.
Semantic eirrors are next in line and conflict aborts
are least critical. Aborts due to deadline expiration
and semantic errors must prevail over conflict aborts,
since the former require discarding transactions per-
manently whereas the latter result in re,starting trans-
actions.

As described in Section 4, all validating transac-
tions are re tried whenever a transaction enters valida-
tion for tht-1 first time or aborts. Since retrying val-
idation may result in multiple transactions commit-
ting or aborting, it may be a fairly lengthy process.
Rather than allowing a deadline manager’s call into
the CCMgr monitor to block it for such a long period
of time, the CCMgr maintains a thread which acts as
a proxy. When a deadline manager requests that the
CCMgr abort its transaction, the deadline manager
simply hands off the appropriate priority to the proxy
thread and then signals it. The deadline manager is
then free to leave the CCMgr monitor and reply to
the client while the proxy retries all waiting didators .
Note that the deadline manager assigns the priority of
the transaction manager rather than its own priority
to the proxy so that the deadline manager can proceed
unhindered.

6 Conclusions

This papier details the architecture to support a firm
RT-DBMS assuming no a priori knowledge of transac-
tion workload characteristics. Unlike previous simula-
tion studies, StarBase uses a real-time operating sys-
tem to provide basic real-time functionality and deals
with issues beyond transaction scheduling: resource
contention, data contention, and enforcing deadlines.
Issues of resource contention are dealt with by employ-
ing priority-based CPU and resource scheduling pro-
vided by tlhe underlying real-time operating system.
Issues of data contention are dealt with by use of a
priority-cognizant concurrency control ;algorithm with
a special conflict-detection scheme, called Precise Se-
rialization, to reduce the number of aborts. Issues of
deadline-handling are dealt with by constructing dead-
line handlers which synchronize with thie start and end
of a transalction and which don’t interfere with its ex-
ecution until the deadline expires.

The next step is to extend these solutions to the
situation in which transaction characteristics are at

least partially specified beforehand. With prior knowl-
edge, a RT-DBMS can preallocate resources and ar-
range transaction schedules to minimize conflicts, re-
sulting in more predictable service. Execution time
estimates and off-line analysis can be used to increase
DBMS-wide predictability. Temporal consistency [4],
where data used to derive new data must be consis-
tent within a certain validity interval, is also a matter
to be explored. Once the basic, real-time, POSIX.4-
compliant functionality needed to support a firm real-
time database has been established, StarBase can be
ported to other platforms.

References

[I] R. Abbott and H. Garcia-Molina. Scheduling Real-
Time Transactions: A Performance Evaluation. A CM
Transactions on Database Systems, 17(3):513-560,
September 1992.

[2] J. R. Haritsa. Transaction Scheduling in Firm Real-
Time Database Systems. PhD thesis, University of
Wisconsin-Madison, August 1991.

[3] J. Huang. Real- Time Dansaction Processing: Design,
Implementation, and Performance Evaluation. PhD
thesis, University of Massachusetts at Amherst, May
1991.

[4] Young-Kuk Kim. Predictability and Consistency in
Real- Time Transaction Processing. PhD thesis, Com-
puter Science Department, University of Virginia,
May 1995.

[5] T. Kitayama, T. Nakajima, and H. Tokuda. RT-IPC:
An IPC Extension for Real-Time Mach. Technical
report, Carnegie-Mellon University, August 1993.

[6] J. Lee and S. H. Son. Using Dynamic Adjustment of
Serialization Order for Real-Time Database Systems.
In Proc. of the 14th Real-Time Systems Symposium,
pages 66-75, Raleigh-Durham, NC, December 1993.

[7] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment. Journal of the ACM, 20(1):46-61, 1973.

[8] S. Savage and H. Tokuda. Real-Time Mach Timers:
Exporting Time to the User. In Proceedings of the
Third USENXX Mach Symposium, April 1993.

[9] L. Sha, R. Rajkumar, S. H. Son, and C. Chang. A
Real-Time Locking Protocol. IEEE Transactions on
Computers, 40 (7) : 782-800, July 1991.

[lo] H. Tokuda and T. Nakajima. Evaluation of Real-Time
Synchronization in Real-Time Mach. In Proc. of the
Second USENIX Mach Workshop, October 1991.

Red-Time
Mach: Towards Predictable Real-Time Systems. In
Proc. of the USENIX 1990 Mach Workshop, October
1990.

[ii] H. Tokuda, T. Nakajima, and P. Rao.

341

