
A Performance and Schedulability Analysis of an Autonomous Mobile Robot∗

Ala′ Qadi Steve Goddard
Computer Science & Engineering
University of Nebraska–Lincoln

Lincoln, NE 68588-0115
{aqadi, goddard}@cse.unl.edu

Jiangyang Huang Shane Farritor
Mechanical Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588-0656

{jyhuang, sfarritor}@unl.edu

Abstract

We present an autonomous, mobile, robotics application
that requires dynamic adjustments of task execution rates
to meet the demands of an unpredictable environment. The
Robotic Safety Marker (RSM) system consists of one lead
robot, the foreman, and a group of guided robots, called
robotic safety markers (a.k.a., barrels). An extensive analy-
sis is conducted of two applications running on the foreman.
Both applications require adjusting task periods to achieve
desired performance metrics with respect to the speed at
which a system task is completed, the accuracy of RSM
placement, or the number of RSMs controlled by the fore-
man. A static priority scheduling solution is proposed that
takes into consideration the strict deadline requirements of
some of the tasks and their dynamic periods. Finally, a
schedulability analysis is developed that can be executed
online to accommodate the dynamic performance require-
ments and to distinguish between safe operating points and
potentially unsafe operating points.

1. Introduction

The Robotic Safety Marker (RSM) system is a mobile,
autonomous, robotic, real-time system that automates the
placement of highway safety markers in hazardous areas,
thereby eliminating risk to human workers [5, 17]. The
RSMs operate in mobile groups that consist of a single
lead robot—called the foreman—and worker robots—called
RSMs—that carry a highway safety marker, commonly
called a barrel. Control of the RSM group is hierarchi-
cal and broken into two levels—global and local control—
to reduce the per-robot cost. The foreman robot performs
global control. To move the robots, the foreman locates
each RSM, plans its path, communicates destinations points
(global waypoints), and monitors performance. Local con-
trol is distributed to individual RSMs, which do not have
knowledge of other robots and only perform local tasks.
Figure 1 shows a picture of the current prototypes. While the
RSM is in near final form, the foreman prototype is based
on a robot that was used for a prior project, and serves as a
proof-of-concept platform for the global control of the RSM
system.

∗Supported, in part, by grants from the National Science Founda-
tion (EHS-0208619, CNS-0409382, and CCF-0429149) and the National
Academy of Sciences Transportation Research Board-NCHRP IDEA Pro-
gram (Project #90).

(a) The prototype fore-
man.

(b) A prototype RSM (a.k.a.,
barrel robot).

Figure 1. Prototype RSM foreman and worker robots.

Our previous work considered the problem of detecting
the RSMs and sending them waypoints [18]. In this work
we consider performance with respect to the speed at which
the foreman (and therefore the group) can move as well as
the accuracy of RSM path prediction and correction. In fact,
the execution rate of many of the tasks are directly related
to these performance criteria. The dynamic parameters of
the new combined system and desired performance, how-
ever, can lead to overload conditions. That is, the system is
not schedulable unless the performance of one of the system
activities is reduced.

Applying traditional real time systems scheduling theory
to robotic applications is not a new concept. Examples of
applying the classic periodic task model to robotics can be
found in [11, 2, 13, 15, 6]. Adjusting the quality of ser-
vice for real-time robotic applications has been addressed in
[3, 14, 8], which are most closely related to this work. The
techniques proposed by Beccari et al. [3] focus on soft real-
time tasks and cannot be applied to the hard real-time RSM
scheduling problem. Hassan et al. [8] adjust the quality of
service for a robotic application using the scheduling analy-
sis developed by Audsley et al. [1], which we show is ineffi-
cient for the RSM application in Section 5.1. Pedreiras and
Almeida [14] propose two methods for quality of service
management. However, their elastic QoS manager is based
on earliest-deadline-first (EDF) scheduling and the fixed pri-

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

ority QoS manager considers only the rate monotonic (RM)
scheduling algorithm. Neither of these approaches can be
applied to the RSM application, which has a fixed prior-
ity scheduler and mission requirements that preclude RM
scheduling in some scenarios.

This paper presents a detailed analysis of the robotics
application, the relationship between task periods and per-
formance, and an online schedulability test that can be
used to distinguish between safe operating points and po-
tentially unsafe operating points. The analysis and on-
line schedulability test provide a framework for a future
application-level control algorithm that can make dynamic
performance/schedulability tradeoffs. For example, using
the analysis framework presented here, one option to resolv-
ing an overload condition might be for the foreman to move
slower, which gives it more time to compute a safe path for
itself or to compute more accurate paths for the RSMs. An-
other option to eliminating overload might be to reduce the
accuracy of RSM placement. A third option is to reduce the
number of RSMs under the foreman’s control. This work
provides the framework required to identify overload condi-
tions and evaluate the impact of various corrective actions.

The rest of this paper is organized as follows. Section
2 presents an overview of the foreman’s main control units.
Section 3 describes the path planning and speed control task
set, related challenges, and the relationship between task
periods and the speed at which the robot can safely move,
which depends on sensors and obstacles in the environment.
Section 4 describes a tradeoff that must be made between
the accuracy of RSM placement and the rate at which their
movement must be monitored by the foreman. Section 5
presents a real-time scheduling analysis for the system that
can be executed online. Finally, Section 6 presents a short
conclusion.

2. The Foreman Design
It is the foreman’s job to locate each RSM, plan their in-

dividual paths, communicate destination points (global way-
points), and monitor the performance of each RSM. The
foreman is also autonomous. Thus, it has to plan its own
path and motion while performing the tasks related to RSM
control. These activities are modeled as real tasks; Sections
3, 4 and 5 provide more detail on these activities and their
real-time attributes.

The foreman consists of seven units, as shown in Figure
2: main unit, power unit, communication unit, localization
unit, sonar unit, sensor unit and motor unit. The main unit,
which is the central processing unit of the foreman, consists
of a PC/104-Plus embedded processor system with RS232
and RS485 serial ports and a parallel port interface. The op-
erating system for the main unit is Windows CE. The power
unit consists of two 12V batteries and DC converters. It sup-
plies ±12V and ±5V voltages for the system. A standard
RS232 serial port is used to interface with the communica-
tion unit—a 9XStreamTM 900 MHz OEM RF module.

The foreman uses a SICK laser scanner, with an effective

Power Unit

Batteries, DC to

DC converters,

etc.

Sonar Unit

24-sonar ring

circuit board

Communication

Unit

9XStream

OEM RF

Module

Motor Unit

PIC16F84

MicroController

Motor Circuit

Board

Driving

Motor

Steering

Motor

DM5406

Main Unit

PC/104 -Plus

(Windows CE OS)

Parallel Port

RS232

RS485

TCP/IP

 Sensor Unit

Rabbit 3000

Microprocessor,

encoders, gyro

Localization Unit

Sick Laser

L MS200

Figure 2. Main control units of the foreman.

range of 32 meters, to scan the horizon for the RSMs. The
main unit receives the laser data through a high speed RS485
serial port and processes the data using a modified Hough
algorithm, as described in [18], to determine the RSM posi-
tions. The foreman then plans their paths accordingly.

The sonar unit consists of a ring of 24 active sonar
sensors, with 15◦ separation, that provides 360◦ coverage
around the foreman. Each sonar sensor has a maximum ef-
fective range of 7.25 meters. The main unit pings the 24-
sonar ring in the sonar unit through the parallel port and
relies on the collected data to safely navigate the foreman.
The sonar sensors are used instead of the laser scanner to
collect environment information to plan the foreman’s own
path because it is much faster to process the sonar signal
with high accuracy than to process the laser scanner data,
which is computationally intensive (Sections 3 and 4 present
task execution time details).

The sensor unit consists of a Rabbit 3000 microproces-
sor, four encoders and a gyro sensor. The Rabbit 3000 mi-
croprocessor reads sensors and localizes the foreman. At
the same time, the main unit communicates with the Rabbit
3000 microprocessor via winsock networking. The motor
unit connects to the main unit via a DM5406, an analog I/O
data module with two DAC outputs and 16 digital I/O lines.
In the motor unit, a PIC16F84 micro-controller controls the
steering and driving motors.

3. Foreman Path Planning and Speed Control

The foreman depends on the sonar sensors to plan its path
by processing the sonar signals to determine the presence of
obstacles and their distance. The maximum speed at which
the foreman can travel is related to the rate the sonar signals
can be gathered and processed. If the foreman moves faster
than the sonar signals can be processed, then the motion will
be unsafe because there might be an obstacle in the path that
will be undetected at that rate.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

Task e p d φ max J
Sonar-Sendi esend = .085ms ps esend φsendi

0
Sonar-Receivei erecv = .03ms ps esend + erecv+max ∆t φrecvi

max ∆t

Path-Plan/Speed-Control eplan = 1.32ms ps eplan φplan 0

Table 1. Motion control task set. Phase parameters φsendi
, φrecvi

, and φplan are defined by Equations (1), (2), and (5)
respectively. The maximum jitter parameter max ∆t is defined by Equation (4).

3.1 The Motion Control Task Set

The 24 sonar sensor signals are pinged in sequence with
a delay of 2ms between consecutive sensors to eliminate
crosstalk. The motion control for the foreman code can
be modelled as a set of periodic tasks: 24 tasks for send-
ing sonar signals (one for each sensor), similarly another
24 tasks for receiving sonar signals and a path-plan/speed-
control task. These tasks all execute with a common pe-
riod ps, which is called the scan period. Each sonar send
task sends a command to its corresponding sonar sensor to
transmit its signal. Each sonar receive task reads the corre-
sponding sonar sensor after the signal is echoed back to the
sensor. The parameters for the motion control task set are
shown in Table 1, where e, p, d, φ and max J are the exe-
cution time, period, relative deadline, phase, and maximum
jitter respectively. The phase represents the earliest possible
release time for a task and maximum jitter is the maximum
delay between the phase and the actual release time of the
task. In this task set, jitter is caused by delays in receiving
sonar signals, which are primarily dependent on the location
of objects in the environment.

The sonar send tasks are released with a delay between
them to eliminate crosstalk. The phase of these tasks,
φsendi, is given by Equation (1), where i is the task index, τ
is the delay used to eliminate crosstalk between consecutive
sonar send tasks and esend is the execution time of a sonar
send task. These tasks have zero jitter and are required to
execute as soon as they are released; hence a relative dead-
line equal to its execution time.

φsendi = (i − 1) · (τ + esend) 1 ≤ i ≤ 24 (1)

φrecvi
= (i − 1) · τ + i · esend 1 ≤ i ≤ 24 (2)

∆t =
2 · Dobstacle

340m/s
(3)

max ∆t =
2 · D

340m/s
(4)

φplan = ps − eplan (5)

A sonar receive task is not released until its correspond-
ing sonar send task has been executed and the signal is re-
flected back, which is called an echo. Equation (2) gives
the phase for any sonar receive task i. The jitter of a sonar
receive task, however, is dependent on the time delay be-
tween the transmission of a sonar signal and the reception
of its echo, denoted as ∆t. If an object is Dobstacle me-
ters away, the echo time delay can be computed using Equa-
tion (3) where the speed of sound is assumed to be 340 me-

ters/second.1 (Dobstacle is multiplied by 2 in Equation (3)
because the signal has to travel Dobstacle meters before it
is reflected back). Since we do not know the distance to
objects a priori, a minimum distance, D, at which an ob-
ject must be detected for the path-plan/speed-control task to
safely control the robot’s motion is defined. The maximum
echo time delay—and hence maximum jitter—is then com-
puted using D in Equation (4). If an object is farther than D
meters away, the path-plan/speed-control task does not need
to know about it because it will not provide any additional
useful data in this scan period. Thus, receipt of an echo after
max ∆t time units is ignored.

The path-plan/speed-control task computes the path of
the foreman and controls its speed based on the data col-
lected from the sonar signals. The design of the control
system is based on the assumption that this task executes
at the end of the scan period, but after all of the useful sonar
signals have been received. This is an artifact of a previ-
ous control-loop design approach in which the environment
was scanned as fast as possible. However, the application of
real-time scheduling theory to this system lets us reduce the
scan rate so that processor capacity can be safely allocated
to other system tasks. Thus, to simplify the application of
real-time technology to this system, the phase of the path-
plan/speed-control task is set to coincide with the end of the
scan period, as shown by Equation (5). To ensure the task
completes by the end of the period, its relatively deadline
must then be set equal to its execution time. For further de-
tails refer to [16].

3.2 Continuous Motion Planning

The goal of this task set is to achieve a continuous safe
movement of the foreman at the maximum safe speed while
still being able to meet all task deadlines. To achieve con-
tinuous movement, the path is divided into a number of seg-
ments. Each segment is delineated by a scan point that
marks the beginning of a scan period. We must, however,
allow enough time for all motion control processing to com-
plete within the scan period (i.e., before arriving at the next
scan point). Thus, the length of the scan period, ps, is depen-
dant on the traveling speed of the foreman and the desired
minimum object detection distance D. To simplify control,
it is desirable for the foreman to have a constant speed be-
tween any two scan points. Under these constraints and as-
sumptions, Equation (6) defines a lower bound on ps that is

1The actual speed of sound varies slightly depending on environmental
conditions.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

required to safely control the foreman’s motion.

ps ≥ φrecv24 + drecv24 + eplan

= 23 · τ + 24 · esend + max ∆t + erecv + esend + eplan

= 23 · τ + 24 · esend +
2 · D

340m/s
+ erecv + esend + eplan

= 23 · τ + 25 · esend +
2 · D

340m/s
+ erecv + eplan

(6)

We now quantify the relationship between ps, the fore-
man’s speed, D, and objects in the environment. Let each
scan point in the foreman’s path be denoted Si. At least
ps time units must elapse before the foreman leaves point
Si and arrives at point Si+1. A Scanning Zone, or simply
Zone i, is defined as the area we can travel safely in with-
out the need for another sonar scan. Scanning Zone i is the
area between point Si and point Si+1. The foreman achieves
continuous motion by scanning Zone i + 1 while traveling
through Zone i. Of course, this requires that the foreman
scan Zone 0, the first zone, before starting its movement.
Figure 3 shows the distribution of scan points in time and
distance from the moment the system starts (note: vmax is
the foreman’s maximum speed).

System

Start

. . .

Motion Start

. . .

v
max

.p
s

v
max

.p
s

v
max

.p
s

D = D
max

(Sonar Range)
D = D

max

(Sonar Range)

D = D
max

(Sonar Range)

v
max

.p
s

S
0

S
1

S
2 S

3
S

4

Zone 1Zone 0 Zone 2

Zone 0*

Zone 3

p
s

p
s

p
s

p
s

p
s

Time

Traveled

Distance(0,0)

Figure 3. Scanning point distribution in time and space

with no obstacles.

Let vmaxi denote the maximum safe speed at which the
foreman can move through Zone i while guaranteeing a
continuous, crash-less motion. Obstacles in the environ-
ment, ps and τ , all constrain vmaxi. To illustrate these con-
straints on vmaxi, we consider two different cases: an obsta-
cle free environment, and an environment in which obstacles
exists.

Case 1: Obstacle Free Environment.
Let Msafe represent the maximum distance the robot can

move safely. In this case, Msafe is the minimum distance
scanned by the sonar sensors: D. As we can see in the top

part of Figure 3, at time t = 0 the foreman is initially at
scan point S0. We start our initial scan but do not start the
motion until the end of the first scan period. At this time
Msafe = D because the foreman does not start the motion
until the end of ps time units. Therefore Zone 0∗ extends
to a distance of D. We can keep moving safely in Zone 0∗,
but this will imply the need to stop at point S2 at the end of
Zone 0∗ to scan Zone 2. We can avoid the stop if we divide
Zone 0∗ into two smaller zones—Zone 0 and Zone 1—and
scan Zone 2 while moving in Zone 1.

However, since we start gathering the sonar data (for
Zone i) ps time units before we reach Zone i, the size
of the newly scanned region will be reduced, as illustrated
in Figure 3. The worst case is if the oldest data gathered
by a sonar sensor is in the direction of motion. Therefore,
Msafe = D − v · ps where v is the foreman’s speed. The
path in this case should be divided into a number of path
scan points with a distance of Msafe between any two scan
points (Figure 3).

Since at least ps time units must separate each scanning
point, we can calculate vmax using Equation (7), assuming
constant speed between any two scan points.

vmax =
Msafe

Avilable Time to Complete the Motion

=
D − vmax · ps

ps
=

D

ps
− vmax =

D

2 · ps

(7)

Let Dmax denote the maximum effective distance of the
sonar sensors. In this application Dmax = 7.25m. To cal-
culate the maximum speed associated with the maximum
detectable sonar range Dmax, we need first to use Equa-
tion (6) to calculate the minimum value of ps for Dmax.
D = Dmax = 7.25m. The minimum value for ps oc-
curs when the minimum value for τ , which is 2ms is used.
Substituting 2ms in Equation (6), we get ps = 92.1ms �
93ms. Therefore vmax=7.25m/(2 × 93ms) = 38.98m/s.
The final version of the foreman should be able to travel
at speeds in the range of 10 to 20m/s. This analysis shows
that, at any speed less than or equal to 38.98m/s, the proces-
sor will be able to process the data and plan the path using
the minimum period of ps if no obstacles exist.

If at any scan point Si we change the sonar period ps

or change the sonar detection range D, then Equation (7)
becomes

vmaxi+1 =
Di − vi · psi

psi+1

, (8)

where vmaxi+1 is the next maximum speed, psi+1 is the
next sonar period, Di is the current sonar detection distance,
vi and psi are the current speed and sonar period respec-
tively.

Case 2: Obstacles Exist.
In this section we analyze the case of static obstacles in

the foreman’s path. The existence of an obstacle in the fore-
man’s path introduces constraints on motion planing:

• The maximum distance the robot can safely move is
not the maximum distance that can be measured with

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

p
s

i
p

s
i+

1
p

s
i+

2

Obstacle

Zone i Zone i+1 Zone i+2

Zone i+1* Zone i+2*

Foreman

Path

Distance

Travelled

v
i
. p

si
v

i +1
. p

si+1

v
i +2 .

p
si+ 2

Time

S
i

S
i+1

S
i+2

S
i+3

Maximum

Speed v
max

(D
obstacle

)

D
i
= D

max

(Sonar Range)
D

i+1
= D

max

(Sonar Range)

D
i+2

= D
max

(Sonar Range)

Original

Path Point

S
org (i+2)

V
max (i+1)

V
max (i)

V
max (i+2)

Distance

Figure 4. Constant speed (after the obstacle) with adjust-

ments to ps and D at scan points.

the sonar, but rather the distance between the obstacle
and the foreman, Dobstacle. This distance is not related
to the length of the period as it was in the previous case.

• The second difference is that because of obstacles in
the path we may have to change the foreman’s speed at
the path scan point when we discover the obstacle. This
means that the maximum speed for the zone after the
obstacle is also dependent on the speed before reaching
the obstacle. Note that this is similar to treating the
obstacle as a scan point because we cannot see behind
the obstacle.

As in Case 1, the system starts at scan point S0 with D =
Dmax and ps = DefaultValue. The initial speed of the robot
is then set using Equation (7) with D = Dmax if no object
was detected and D = Dobstacle otherwise.

Figures 4 and 5 show what happens when the foreman
encounters an obstacle under various conditions. Figure 4
shows the case where we need to adjust the speed to keep
both ps and D the same. Figure 5 demonstrates the case
where we reduce ps and D.

First, consider the scenario shown in Figure 4. At path
scan point Si the robot was moving at speed vi and using its
maximum sonar signal range D = Dmax. At point Si the
foreman starts scanning for obstacles in Zone i + 1 while it
is moving in Zone i. At point Si+1 (after ps time units) the
path-plan/speed-control task released in period psi has just

p
s

i
p

s
i+

1

Obstacle

Zone i Zone i+1 Zone i+2

Zone i+1* Zone i+2*

Foreman Path

Distance

Travelled

v
i
. p

si
v

i +1
. p

si+1

v
i +2 .

p
si+2

Time

S
i

S
i+1

S
i+2

S
i+3

Maximum

Speed v
max

(D
obstacle

)

Di= D max

(Sonar Range)
D

i+1
< D

max

(Sonar Range)

Di+2 < D max

(Sonar Range)

Original

Path Point

S (i+2) org

v
max (i)

p
s

i+
2

Distance

D
min

v
max (i+1)

v
max (i+2)

Figure 5. Adjusting the robot’s operating points as obsta-

cles are encountered.

finished executing. At that point, the robot has detected that
the obstacle exists in Zone i + 1.

Because of the obstacle, the next path point, which was
planned to be at S(i+2)org , will now move closer to point
Si+2, converting Zone i + 1 to Zone i + 1∗. The speed for
Zone i + 1 between Si+1 and S(i+2)org was originally set
at point Si, but because of the obstacle we have to readjust
the speed at point Si+1.

Since the scan must complete before reaching the obsta-
cle, we need either to adjust the maximum speed or ps to
meet the new constraint. If the obstacle is at a distance
Dobstacle ≤ vi ·psi the new constraint on the speed becomes

vmaxi+1 =
Dobstacle

ps
. (9)

As shown in Figure 4, if we decide to keep psi+1 = psi,
D = Dmax, we need to adjust vmaxi+1 (downward) ac-
cording to Equation (9) for Zone i+1∗ to meet the obstacle
constraint. The maximum speed for Zone i + 2∗ is then de-
termined at point Si+2 using Equation (8). The maximum
speed for this zone will increase since the robot will be able
to travel a greater distance in the same time period ps.

Now consider the scenario demonstrated in Figure 5.
In this scenario, we have flexibility in ps but we wish to
maintain a constant maximum speed in Zone i + 1∗ and
Zone i+2∗ while still meeting the obstacle constraint. This
is accomplished by adjusting D, ps, or both.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

The adjusted sonar detection distance should allow de-
tection for a minimum safe distance beyond the obstacle.
Therefore the new constraint on D will be Dobstacle +
Dmin ≤ D = Di+1 ≤ Dmax, where Dmin is the mini-
mum safe distance beyond the obstacle to be scanned. Once
we calculate Di+1, we can then calculate psi+1 from Equa-
tion (6), but we need to ensure that the robot does not reach
the obstacle before the end of the next period. Therefore,
vmaxi+1 will be

vmaxi+1 =
Dobstacle

psi+1

(10)

However, the goal is to derive a constant maximum speed
in the next two zones, Zone i + 1∗ and Zone i + 2∗. The
maximum speed for Zone i + 2∗, determined at point Si+1,
can be calculated using Equation (8). Therefore,

vmaxi+1 = vmaxi+2

=⇒ vmaxi+1 =
Di+1 − vmaxi+1 · psi+1

psi+2

=⇒ Dobstacle

psi+1

=
Di+1 − Dobstacle

psi+1
· psi+1

psi+2

=⇒ psi+2 = psi+1 ·
Di+1 − Dobstacle

Dobstacle
(11)

Substituting psi+1 with its minimum value from Equa-
tion (6) in Equation (11) we get

psi+2 = γ · Di+1

Dobstacle
+

2 · Di+1 · (Di+1 − Dobstacle)
340 · Dobstacle

(12)
Where γ = 23 · τ + 25 · esend + erecv + eplan. However,
we need to make sure that psi+2 is still bounded by Equa-
tion (6), that is

psi+2 ≥ γ +
2Di+2

340
. (13)

Equating Equation (12) with the minimum value of psi+2 in
Equation (13), yields Equation (14). This equation can be
used to calculate the value of Dmin that produces a constant
maximum speed through Zone i + 1∗ and Zone i + 2∗.

2D2
i+1

340Dobstacle
+

(
γ

Dobstacle
− 2

340

)
· Di+1 − 2Di+2

340
− 2γ = 0,

Dobstacle + Dmin ≤ Di+1, Di+2 ≤ Dmax

(14)

Since both Di+1 and Di+2 are unknown, a feasible solution
to Equation (14) can be found if we set the value for one of
the variables and calculate the other. After finding the value
for Di+1, values for psi+1 and psi+2 can be computed using
Equation (6).

The two scenarios shown in Figures 4 and 5 and the equa-
tions presented in this section illustrate that the length of the
scan period, the maximum traveling speed of the foreman,
and the object detection distance are all interrelated. The

sonar sensors provide a physical maximum object detection
limitation of 7.25m. Mission requirements have established
a minimum safe scanning distance of 1m and a minimum
traveling speed of 1m/s for the robot. These boundary
values for D can be combined with Equations (6) and (7)
and parameter values in Table 1 to derive a range for ps:
55.34ms ≤ ps ≤ 3650ms.

The processor utilization for this task set is inversely pro-
portional to the length of the scan period since the same
(maximum) amount of work must be done in each scan pe-
riod. Thus, one way to reduce processor load in an overload
condition is to increase the scan period. This, in turn, may
reduce the speed at which the robot can complete its mis-
sion, resulting in lower system performance. Another op-
tion to reducing processor load is to reduce the performance
of the system with respect to control of the RSMs. This
tradeoff is described next.

4. RSM Motion Planning and Tracking
Recall that, in addition to planning its own path, the fore-

man is responsible for sending the RSMs path waypoints
they need. The foreman is also responsible for guarantee-
ing that the RSMs stay on their respective paths. To achieve
these goals, a laser scanner (with an effective range of 32
meters) is used to determine the position of each RSM. The
foreman then computes and sends global waypoints to each
RSM, which then computes a local path from the current
waypoint to the next waypoint.

The RSM motion planning and tracking performed by
the foreman can be modeled as a set of tasks and prece-
dence constraints shown in the processing graph of Figure 6.
The task attributes e, p, d, φ, and max J are listed in Ta-

Scanning Detecting Predicting Planning

Way Point 1

Way Point n
Window

Resizing
.

 .

.

Figure 6. RSM motion planning and tracking processing

graph.

ble 2. A phase and jitter of 0 is assumed for the precedence-
constrained tasks in this set. It would also be reasonable
to set the phase of a task equal to the sum of the execution
times of its predecessor tasks in the task graph. However,
since all of the tasks execute on the same processor and
each task is released as soon as its predecessor completes,
the task can be modelled as though they were all released at
the same instant with priority given to predecessor tasks in
the task graph [7].

This RSM motion planning and tracking task set is nearly
the same task set that was analyzed in [18]. However, a path

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

Task e p d φ max J

Scanning 12ms pl pl 0 0
Detecting .0172 · n2 + .1695 · n + 12.69 pl pl 0 0
Predicting epredict = 3.8 · n pl pl 0 0
Planning 16ms 1500ms 1500ms 0 0

Way Pointi 8.33ms 1500ms 1500ms 0 0
Window Resizing 2ms pl pl 0 0

Table 2. RSM motion planning and tracking task set. The variable n represents the number of RSMs being controlled by the

foreman.

Figure 7. Average error in distance v.s. laser sampling

Rate.

prediction task has been added to identify and correct de-
viations from the planned path in the actual path taken by
RSMs. The rest of this section briefly describes the role
of the path prediction task and its impact on system per-
formance. (Full details of the path prediction algorithm are
presented in [16], while [18] provides a description of the
other tasks in this task set.)

A prediction algorithm is used because the RSMs use
dead reckoning to determine their position from a relative
starting point; the RSMs have neither a compass nor a global
position system (GPS) system to keep per unit costs low.
Thus, to accurately correct error in the path taken by the
RSMs, the foreman needs to know where each RSM will be
at the next sampling period and how far it will have traveled
from its current point. Moreover, in addition to being an es-
sential part of an error correction mechanism, the prediction
algorithm is useful for determining the current orientation
angle for the RSMs since they do not have a compass.

The path prediction is based on a differential, predictor–
corrector algorithm. Thus, the accuracy of the algorithm
increases if the points used in the prediction are closer to-
gether. Scanning the horizon at a faster rate yields points
closer to each other. Hence the error in the prediction is re-
lated to the rate at which RSM path data is collected from the
laser scanner. Figures 7 and 8 show the average and maxi-
mum distance error between the predicted value and the ac-

Figure 8. Maximum error in distance v.s. laser sampling

rate.

tual value of the next point in an RSM’s path. The graphs
are based on data gathered from five RSMs moving in differ-
ent paths and demonstrate an approximately linear relation
between the prediction error ε and the laser sampling period
pl. Applying linear regression to the data we get the approx-
imate relation between the average error εaverage and pl in
Equation (15), and between the maximum error εmax and pl

in Equation (16).

εaverage = 0.0219 · pl + 0.2517 (15)

εmax = 0.616 · pl + 12.467 (16)

The relations in Equations (15) and (16) show that we can
achieve a desired accuracy of path prediction by adjusting
the laser scanner sampling period pl. Normally, we want
minimal error. However, if the system becomes overloaded
due to too many obstacles in the environment, it may be de-
sirable to increase the laser sampling period pl rather than
increasing the sonar sampling period ps or reducing the
speed of the foreman.

The laser sampling period pl can be adjusted in multiples
of 50ms because of the SICK Laser hardware and the de-
sign of the detecting tasks [18]. The minimum value for pl

is 50ms. From Figure 8 we note that a period of 1000ms
might generate an error of more than 75cm. An error value
higher than this will not be acceptable in most situations.
Therefore an upper bound of 1000ms on pl is a reasonable

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

bound.
The execution time for the prediction algorithm is deter-

ministic because a finite number of closed-form calculations
are performed. These calculations have to be repeated, how-
ever, for each RSM. The worst case execution time, epredict,
for the prediction algorithm task controlling one RSM was
determined experimentally to be epredict = 3.8ms. We
have also verified experimentally that Equation (17) com-
putes epredict for n RSMs.

epredict = 3.8 · n (17)

From Equations (15), (16) and (17) we conclude that the
prediction task utilization, epredict

ps
, is related to the number

of RSMs and the accuracy of RSM path prediction. Higher
accuracy requires a shorter pl and, therefore, higher proces-
sor utilization. Increasing the number of RSMs tracked and
controlled by the foreman also increases the utilization be-
cause it increases epredict as well as the number of waypoint
tasks.

5. Real Time Scheduling
In the previous two sections we showed how the two task

sets running on the foreman require period adjustments to
attain a certain performance level. In the first case it was the
speed at which the foreman could safely move. In the sec-
ond case it was the accuracy of RSM path prediction. In this
section we analyze the schedulability of the system and de-
rive an online schedulability test. An affirmative result from
the schedulability test ensures that all relatively deadlines
will be met. A negative result indicates a possible overload
condition in which performance guarantees cannot be made.

From an application point of view, it is preferable that the
motion control task set execute with strictly greater priority
than the RSM motion planning and tracking task set. Com-
bining this desire with the optimality of deadline monotonic
scheduling [10] results in the task priority assignment shown
in Table 3.

The priority assignment is not strictly deadline mono-
tonic since the range for ps is 55.34ms ≤ ps ≤ 3650ms,
while the range for pl is 50ms ≤ pl ≤ 1000ms. Under
most operating conditions, however, the chosen priority as-
signment is deadline monotonic.

Note that Tasks 1, 3, and 9 in Table 3 are not single tasks
but actually groups of tasks with common characteristics.
For brevity, we assign them a single task index and priority.
This is reasonable as long as priority ties are assumed to be
broken in favor of the task with the smaller index i subscript
(and hence earlier phase for the send and receive tasks).

5.1 Schedulability Analysis

The task set has predefined static priorities with phases
and deadlines less than or equal to periods. The task set also
has two dynamic periods. The goal is to find an efficient
schedulability test for the task set that can be executed on-
line (because of the dynamic work load). Our approach is

Task Index Task p Priority
1 Sonar Sendi ps 1
2 Plan/Speed ps 2
3 Sonar Receivei ps 3
4 Scanning pl 4
5 Detecting pl 5
6 Predicting pl 6
7 Window Resizing pl 6
8 Planning 1500 7
9 Way Pointi 1500 8

Table 3. Task priority assignments.

based on the principles of time demand analysis presented
in [9, 1].

For each task Ti, let Ri be the task response time, di be
the relative deadline, Ji be the jitter, ei be the worst case
execution time, pi be the period. According to the time de-
mand analysis method presented in [1], if response time Ri,
1 ≤ i ≤ n, computed using Equation (18) also satisfies
Ji + Ri ≤ di, then the task set is schedulable. In Equa-
tion (18), Bi is the blocking factor for task Ti, hp(i) is the
set of tasks with higher priority than task Ti. Equation (18)
is solved by iteration because Ri appears on both sides of
Equation (18). In general the equation is solved by setting
Ri

0 = 0 for the first iteration, the iteration terminates when
Ri

m+1 = Ri
m.

Ri
m+1 = ei + Bi +

∑
∀j∈hp(i)

⌈
Ri

m + Jj

pj

⌉
· ej (18)

A schedulability test using the time demand analysis re-
quires finding a solution for Equation (18) for every task in
the task set. This is inefficient for two reasons. First, it as-
sumes worst-case alignment of periods for all tasks, which
over states the response time for most of the tasks in this
task set. Second, dynamic periods in the task set require this
test to be done online and the computation time to find a so-
lution for Equation (18) is not deterministic. Therefore we
present a more efficient schedulability test for this task set
based on time demand analysis principles and proprieties of
the task set.

Theorem 5.1. All Sonar Send tasks (Task 1) will always
meet their deadlines if ps ≥ 23 · τ + 24 · esend + max ∆t +
erecv + esend + eplan.

Proof: See [16].

Theorem 5.2. The Path-Plan/Speed-Control task (Task 2)
will always meet its deadline if ps ≥ 23 · τ + 24 · esend +
max ∆t + erecv + esend + eplan.

Proof: See [16].

Theorem 5.3. All Sonar Receive tasks (Task 3) will always
meet their deadlines if ps ≥ 23 · τ + 24 · esend + max ∆t +
erecv + esend + eplan.

Proof: See [16].

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

For the rest of the tasks, offline analysis is not enough to
determine the schedulability of the tasks because some of
the tasks have dynamic periods that are independent of ps.
Dynamic periods introduce complexity in determining the
scheduling condition because of the need to do the time de-
mand analysis online. Applying the time demand analysis
method presented in [1] to Tasks 4 to 9 requires finding a
solution to Equation (18) for each of the tasks iteratively. A
careful analysis of the task set, however, reveals that even
though several tasks have dynamic periods there are only
three distinct periods in the task set at any one time. Theo-
rem 5.4 states that schedulability can be established online
with an affirmative result from two conditions.

Before we present the schedulability condition, we define
the following notation:

• DEMTi, i=j,...,k(L): Demand (interference) by tasks
j through k in any interval of length L.

• ∑
pi=L ei: Total execution time of tasks with period L.

Theorem 5.4. All tasks will meet their deadlines if Equa-
tions (19) and (20) hold.

∑
pi=pl

ei + DEMTi, i=1,...,3(pl) ≤ pl (19)

∑
pi=1500

ei + DEMTi, i=1,...,7(1500) ≤ 1500 (20)

Proof Sketch: Tasks 1-3 will meet their deadlines by The-
orems 5.1, 5.2, and 5.3. Equations (19) and (20) represent an
instance of time demand analysis applied to the remainder
of this task set.

Tasks 4-7 all have a phase of zero, a period of pl, and
deadline equal to pl. Therefore each of these tasks will meet
is deadline if the sum of its execution time plus all demand
(interference) created by higher priority tasks is less than or
equal to its deadline. Moreover, since all of the tasks exe-
cute on the same processor and each task is released as soon
as its predecessor completes, the task can be modeled as
though they were all released at the same time with priority
given to predecessor tasks in the task graph [7]. Therefore,
if Equation (21) holds, tasks 4-7 are schedulable.

7∑
i=4

ei + DEMTi, i=1,...,3(pl) ≤ pl (21)

Tasks 8 and 9 both have a period of 1500ms with zero
phase and deadlines equal to their period. Once again, each
of these tasks will meet is deadline if the sum of its execu-
tion time plus all demand (interference) created by higher
priority tasks is less than or equal to its deadline. Therefore,
if Equation (22) holds, tasks 8 and 9 are schedulable.

9∑
i=8

ei + DEMTi, i=1,...,7(1500) ≤ 1500 (22)

In conclusion, tasks 1-3 always meet their deadlines by
Theorems 5.1, 5.2 and 5.3. Tasks 4-7 are schedulable if

Equation (21) holds. Tasks 8 and 9 are schedulable if Equa-
tion (22) holds. Therefore the task set is schedulable if both
Equations (21) and (22) hold.

The proof sketch of Theorem 5.4 does not show how to
compute the demand created by higher priority tasks. How-
ever, doing so is a straightforward application of Equations
(2) and (11) in [1] by Audsley et al. Equation (11) is a gener-
alization of Equation (2) and computes the demand of “spo-
radically repeating tasks” with inner and outer periods [1].
The sonar send and receive tasks fit this definition. Thus,
DEMTi, i=1,...,3(pl) can be calculated as follows, where L
is the demand (interference) interval:

DEMTi, i=1,...,3(L) =

eplan + min
(
24,

⌈
L

τ+esend

⌉)
· esend

+ min
(
24,

⌈
esend+erecv+max ∆t+L

τ+esend

⌉)
· erecv

if L < ps

eplan +
⌊

L
ps

⌋
· (24 · (esend + erecv) + eplan)

+ min

(
24,

⌈
esend+erecv+max ∆t+L−ps·

⌊
L
ps

⌋
τ+esend

⌉)
· erecv

+ min

(
24,

⌈
L−ps·

⌊
L
ps

⌋
τ+esend

⌉)
· esend if L ≥ ps

Similarly, DEMTi, i=1,...,7(1500) can be calculated as
follows:

DEMTi, i=1,...,7(1500) = DEMTi, i=1,...,3(1500)+

⌈
1500

pl

⌉
·

∑
pi=pl

ei

5.2 Period Adjustments

From the analysis in the previous section, it should be
clear that system schedulability is directly dependent on ps,
pl, and the execution time of the tasks. However, these pa-
rameters are dependent on the selected level of system per-
formance. The value of ps is dependent on the speed of the
foreman and the distance to obstacles (if any). The value of
pl is dependent on the accuracy of RSM placement and the
number of RSMs being controlled. Finally the execution
times of the detecting, predicting, and way point tasks are
directly dependent on the number of RSMs being controlled
by the foreman.

Thus, task periods pl and/or ps may need to be adjusted to
achieve desired performance metrics in the following cases:

• Adjusting the speed of the foreman—either because we
want to move faster from one position to the other or
because there is an obstacle in the path.

• Increasing the accuracy of RSM path predictions.
• Increasing the number of RSMs being controlled.

Although period adjustments are only allowed at the end of
the period being changed, the adjustment might lead to an
unsafe state. If any of the system parameters change then
we need check if the system is schedulable using Equations
(19) and (20). If the system is schedulable then we proceed
to execute the tasks at the new rates. If not, the decision
to increase either pl or ps depends on what system goal is

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

considered more important at the moment. For example, if
moving the foreman to its target at a faster speed is the most
important, pl would be increased. This priority decision is
dynamic, changing with the environment and tasks required
by the foreman at any given moment. Determining such pri-
orities is a research problem of its own and beyond the scope
of this paper. However, the performance and schedulability
analysis presented here provides a framework for quantify-
ing the tradeoffs to be made.

6. Conclusion

We presented a mobile robotic application that requires
adjusting sensor sampling rates to produce desired perfor-
mance levels. A static priority scheduling solution is pro-
posed that takes into consideration the strict deadline re-
quirements of some of the tasks and their dynamic periods.
We have shown how system parameters and environment
changes can create overload conditions on the system pro-
cessor and how system schedulability can be evaluated on-
line.

The online schedulability test can be used to distin-
guish between safe operating points and potentially un-
safe operating points. Moreover, the analysis and on-
line schedulability test provides a framework for a future
application-level control algorithm that can make dynamic
performance/schedulability tradeoffs.

Future work will include analysis of the effect of moving
obstacles on system schedulability. Future work will also
include generalizing the modeling and schedulability anal-
ysis presented here so that it can be applied more easily to
tasks of other real time mobile autonomous systems.

References

[1] N. Audsley, A. Burns, M. Richardson, and K. T. A.
Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, September 1993.

[2] F. Baccelli, B. Gaujal, and D. Simon. Analysis of preeptive
periodic real-time systems using the (max, plus) algebra with
applications in robotics. IEEE Transactions On Control Sys-
tems Technology, 10(3):368–380, May 2002.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate
modulation of soft real-time tasks in autonomous robot con-
trol systems. In Proceedings of the 11th Euromicro Confer-
ence on Real-Time Systems, York, England, June 1999.

[4] A. Burns, D. Prasad, A. Bondavalli, F. D. Giandomenico,
K. Ramamritham, J. Stankovic, and L. Stringini. The mean-
ing and role of value in scheduling flexible real-time systems.
Journal of Systems Architecture, 46:305–325, 2000.

[5] S. Farritor and M. Rentschier. Robotic highaway saftey
marker. In C. Mellish, editor, ASME International Mechan-
ical Engineering Congress and Exposition, Montreal, May
2002.

[6] R. George and Y. Kanayama. A rate monotonic schedular for
the real-time control of autonomous robots. In Proceedings
of the 1996 IEEE International Confernce on Robotics and
Automation, Minneapolis, Minnesota, April 1996.

[7] S. Goddard and K. Jeffay. Analyzing the real-time properties
of a dataflow execution paradigm using a synthetic aperture
radar application. In Proceedings of the 3rd IEEE Real-Time
Technology and Application Symposium, pages 60–71, Mon-
treal,CA, June 1997.

[8] H. Hassan and J. S. A. Crespo. Enhancing the flexibility and
the quality of service of autonomous mobile robotic applica-
tions. In Proceedings of the 14th Euromicro Conference on
Real-Time Systems, Vienna, Austria, June 2002.

[9] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm - exact characterization and average
case behaviour. In Proceedings of 10th IEEE Real-Time Sys-
tems Symposium, pages 166–171, December 1989.

[10] J.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks. Performance
Evaluation, 2(4):237250, December 1982.

[11] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and
P. Shenoy. Real time support for mobile robotics. In Pro-
ceedings of the 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 10–18, May
2003.

[12] C. McElhone and A. Burns. Scheduling optional computa-
tions for adaptive real-time systems. Journal of Systems Ar-
chitectures, 46:46–77, 2000.

[13] T. A. N. Miyata, J. Ota and H. Asama. Cooperative transport
by multiple mobile robots in unknown static environments
associated with real-time task assignment. IEEE Transac-
tions On Robotics and Automation, 18(5):769–780, October
2002.

[14] P. Pedreiras and L. Almeida. The flexible time-triggered (ftt)
paradigm: An approach to qos management in distributed
real-time systems. In Proceedings of the International Paral-
lel and Distributed Processing Symposium IPDPS’03, Nice,
France, April 2003.

[15] D. Prasad and A. Burns. A value-based scheduling approach
for real-time autonomous vehicle control. Robotica, 18:273–
279, 2000.

[16] A. Qadi, S. Goddard, J. Huang, and S. Farritor. A perfor-
mance and schedulability analysis of an autonomous mo-
bile robot. Technical Report TR-UNL-CSE-2004-0015,
Computer Science & Engineering, University of Nebraska-
Lincoln, December 2004.

[17] X. Shen. Control of robotic highway saftey markers. Master’s
thesis, Mechanical Engineering, University Of Nebraska-
Lincoln, 2003.

[18] J. Shi, S. Goddard, A. Lal, and S.Farritor. A real-time model
for the robotic highway safety marker system. In Proceedings
of the 10th IEEE Real-Time and Embedded Technology and
Application Symposium, pages 331–440, Toronto, CA, May
2004.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

