
Proceedings of the 1996 IEEE
International Conference on Robotics and Automation

Minneapolis, Minnesota -April 1996

A Rate-Monotonic Scheduler for the Real-time Control of
Autonomous Robots

Robert George

Information Sciences Directorate
Army Research Laboratory

Adelphi, MD 20783
georgeQcs . nps.navy.mil

Abstract

Most existing real-time control systems use ad hoc
static priority scheduling methods, in spite of the
fact that the rate monotonic scheduling algorithm
was proved to be the optimal static priority schedul-
ing algorithm over 20 years ago. I n this paper, we
discuss a task library we are using for the real-time
control of autonomous robots. The task library com-
prises a preemptive rate-monotonic scheduler which
provides guaranteed optimal scheduling when cer-
tain conditions of processor utilization are met. The
task library has been implemented as a collection of
lightwight threads, which operate entirely in user-
space for maximum eficiency. W e show the perfor-
mance advantages resulting from the reduced over-
head of this approach, compared with commercial
operating systems. The task system is robust, exten-
sible, and portable, and has been successfully used to
control the autonomous mobile robot Yamabico-I1
developed at the Naval Postgraduate School.

1 Introduction

Although the developers of most robotic systems
have an intuitive sense of what they mean by a real-
time operating system, definitions vary widely. The
distinction between real-time computer systems and
general purpose computer systems lies not in their
performance specifications, but in the relative im-
portance of each system’s timing considerations. In
real-time applications, the correctness of a compu-
tation depends not only on the results of computa-
tion, but also the time at which outputs are gen-
erated. The real-time control of an autonomous
robot provides an excellent example of a collection
of related tasks which must complete execution by
a well-specified deadline.

Yutaka Kanayama

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943
kanayamaQcs. nps. navy. mil

The measures of merit in a real-time system in-
clude:

Predictably fast response to urgent events.

High degree of schedulability. We define
schedulability as the degree of resource utiliza-
tion at or below which the timing requirements
of all tasks can be guaranteed.

Stability under transient load. When the sys-
tem is overloaded by events and meeting all
deadlines is impossible, we must still guaran-
tee the deadlines of selected critical tasks.

A real-time operating system may satisfy its
applications’ computation deadlines implicitly, by
hardware brute force, or by blind luck. Historically,
most real-time operating system resource manage-
ment is intended to be “real fast” as opposed to
real-time. The execution time of the operating sys-
tem services and internal operations are designed to
be as fast as possible, to minimize the average ex-
ecution times, and to have a relatively predictable
upper bound for the worst case execution time. But
these assumptions often are not explicitly identified,
or even known. Such systems may successfully op-
erate in real-time, and provide a cost-effective solu-
tion for certain applications. By classic definition,
however, they are not real-time systems because
they do not employ time-constraint driven resource
management [I].

Traditionally, real-time systems use cyclical exec-
utives to schedule concurrent threads of execution.
Under this approash, a programmer lays out an ex-
ecution timeline by hand to serialize the execution
of critical sections and to meet task deadlines.

While such an approach is managable for simple
systems, it quickly becomes unmanagable for large
systems. It is a painful process to develop applica-
tion code so that it fits the time slots of a cyclical

0-7803-2988-4/96 $4.00 0 1996 IEEE 2804

http://nps.navy.mil

executive while ensuring that the critical sections of
different tasks do not interleave. Forcing program-
mers to schedule tasks by fitting code segments on
a time-line is no better than the outdated approach
of managing memory by manual memory overlay.

Designers of real-time systems would like to have
the same benefits that modern software engineers
enjoy: they would like to be able to show early in
the project that their designs meet all the require-
ments and are thus correct. With stringent timing
considerations, this can be difficult.

2 Rate-Monotonic Scheduling

2.1 Overview
Rate-monotonic analysis, a collection of quantita-
tive methods, provides a basis for designing, un-
derstanding, and analyzing the timing behavior of
real-time computing systems. In essence, this the-
ory ensures that as long as the CPU utilization of a
task set lies below a certain bound and appropriate
scheduling algorithms are used, all tasks will meet
their deadlines without the programmer knowing
exactly when any given task will be running. Even if
a transient overload occurs, a fixed subset of critical
tasks will still meet their deadlines as long as their
CPU utilizations lie within appropriate bounds [4].

In short, rate-monotonic scheduling theory puts
real-time software engineering on a sound analyti-
cal footing. Applying this theory to the control of
autonomous robots, for example, allows us to sepa-
rate concerns for the logical correctness of the tasks
which comprise the robot’s control system from the
concerns of timing correctness.

2.2 Scheduling Periodic Tasks
The problem of scheduling periodic tasks was first
addressed by Liu and Layland in 1973 [2]. The Liu
and Layland analysis was derived under several as-
sumptions:

Tasks are periodic, are ready at the start of
each period, have deadlines at the end of the
period, and do not suspend themselves during
execution.

Tasks can be preempted, and the overhead for
context swapping and task scheduling can be
ignored.

Tasks are independent, i.e., there is no task
synchronization and tasks have known, deter-
ministic worst-case execution times.

Now consider a set of n periodic tasks T I , ..., rn.
Each task ri is characterized by four components
(Ci,Ti, Di , I i) , 1 5 i 5 n where

Ci = deterministic computation requirement of
each ,task of ri,

Ti = period of ri,

Di =: deadline of ri,

Ii = phasing of ri relative to some fixed time
origin.

Liu and. Layland proved a set of n indepen-
dent periodic tasks scheduled by the rate monotonic
algorithm. will always meet its deadlines, for all task
phasings, if

where U (n) is the scheduling bound, the maxi-
mum fraction of processor utilization allowable for
n tasks:

U (n) = n(22 - 1) (2)

Finally, Liu and Layland showed that the rate
monotonic scheduling algorithm is optimal among
all fixed priority scheduling algorithms for schedul-
ing periodic task sets with D, = T,.

While the mathematics for the proof may appear
complex, the actual theory itself is quite simple.
“Rate moinotonic” scheduling implies that priorities
should be assigned to tasks as a monotonically in-
creasing function with respect to the task request
rate (l/T%). In other words, the more often a task
is run, the higher’its priority should be. The rate
monotonic theory ensures that as long as the proces-
sor’s utilization is below a certain bound, all tasks
in the task set will complete by their deadlines with-
out the iiiidividual tasks requiring timing informa-
tion about the other tasks.

Equations (1) and (2) offer a sufficient (worst-
case) condition that characterizes schedulability of
a task set under the rate monotonic algorithm. This
bound converges to 69.3% (In 2) as the number of
tasks approaches infinity. This means that if we fol-
low the rules of RMT and use no more than 69.3% of
available processor cycles, we can guarantee optimal
scheduling. The values of the scheduling bounds for
one to nine independent tasks are as follows:

The worst-case bound of 69.3% processor utiliza-
tion given in equations (1) and (2) are respectibly

2805

I Number of Tasks I Scheduling Bound I

Table 1: Processor utilization bounds

large. They are, in fact, quite pessimistic. Ran-
domnly generated task sets are often schedulable
by the rate monotonic algorithm at much higher
utilization levels, even with worst-case phasing. In
general, it has been shown that when periods are
generated from a uniform distribution with a suffi-
ciently wide range of values, the breakdown utiliza-
tion will be in the 88% to 92% range.

In fact, in [4] Lehoczky, Sha, Strosnider, and
Tokuda show that the rate monotonic scheduling
algorithm can schedule task sets up to 100% uti-
lization when D, = Ti and the tasks periods are
harmonic:

If a task set 71, ..., 7n is scheduled using the rate
monotonic algorithm and Tj evenly divides Ti for
1 5 j 5 i, then 7i meets all its deadlines if and only
if

(3)

0
In the next section, we will apply this important

extension of rate-monotonic scheduling theory to
generate task sets with processor utilization rates
approaching unity.

2.3 Scheduling Robotic Control Tasks
The Yamabico-11 autonomous robot is programmed
with a motion control libary called the Model-Based
Mobile Robot Language (MML) [8]. In MML, mo-
tion planning is described in terms of an abstract
two-dimensional coordinate system. This library
provides a well-defined, clean interface to Yamabico
users, where details of the low-level motion system
are hidden from the user and are not required to
describe motion. Sensor data is also available to

the user in either a raw or processed format to be
used in motion planning. The control of Yamabico
is processed through the user task, which communi-
cates with the motion control task, as well as others,
through global shared memory.

The MML system is comprised of three primary
tasks which may be running at any given time.
Other user-defined tasks are added as needed. The
highest priority task is the motion control task,
which performs all low-level path calculations and
direct motor control. The next highest priority
task is the sonar processor task, which processes
all incoming sonar returns and generates line seg-
ments representing obstacles in the local environ-
ment. The lowest priority task is the user task.
This task computes high-level reasoning functions,
and sends commands to the motion control subsys-
tem through a command queue in shared memory

To schedule these task with rate-montonic
scheduling, we consider the case of three periodic
tasks:

[91.

a Motion control task 7 1 : C1 = 3 msec; TI = 10
msec; U1 = 0.3

a Sonar contrortask 7 2 : C2 = 2 msec; T2 = 30
msec; U2 = 0.067

a User function task 7 3 : C3 = 100 msec; T3 =
300 msec; U3 = 0.334

We then calculate the processor utilization of
this task set, according to Equations (1) and (2).
The total utilization of these three tasks is 0.701,
which is below Equation (2)'s bound for three tasks:
3(2* - 1) = 0.779. Thus, rate-monotic scheduling
theory guarantees these tasks are schedulable - they
will meet their deadlines if task 71 is given the high-
est priority, 7 2 the next highest, and 73 the lowest.
The results of the rate-monotonic scheduling calcu-
lations are shown in Table 2, where U; = C;/T;.

I 73 11 300 I 100 I 0.701 I 0.779 I I

Table 2: Yamabico task utilization

Notice that we have scheduled the user task as if
it were a periodic task. Although the user task will

2806

appear to the Yamabico programmer to run contin-
uously, we have chosen to schedule the task with
a long period. This insures that the user task will
have the lowest rate-monotonic scheduling priority
in the system. To ensure the maximum utilization
of Yamabico’s processor, we have also chosen the
period of the user task to be a harmonic of the mo-
tion control and sonar control tasks. This allows the
task set to approach 100% processor utilization, as
defined by Equation (3).

Figure 2 provides a visual description of how
Yamabico’s tasks will be scheduled.

30 j 5
300 I 100

71

n

r3

0.534 0.779
0.867 0.756

0 msec 10 msec 20 msec 30 msec

T1 2T1 3T1 T2

Figure 1: Yamabico’s task Schedule.

2.4 Modifying the Schedule

Now let us consider the effects of changing the task
set for Yamabico. We are developing a low-level
control task called a forerunner. This task projects
an image of Yamabico along the robot’s current
path of motion. An attempt in made to predict
any collisions that may occur in the next moments
of Yamabico motion plan. We have determined that
the prototype of this task will require approximately
5 msec to compute on Yamabico’s processor. We
would like this task to have a priority less than the
motion control task and less than, or equal to the
sonar control task. We would also like the forerun-
ner task to have a higher priority than the user task.
Therefore, we choose a period (Ti) of 30 msecs, with
a computation requirement (Ci) of 5 msec.

It should be noted that, with the addition of the
fourth task, we have exceeded the rate-monotonic
scheduling bound from Equation (2). However,
since we have chosen the tasks to have periods which
are harmonic with respect to each other, we utilize
the scheduling bound in Equation (3). We sum-
marize the re-computation of the rate-monotonic
scheduling bounds in Table 3.

Figure 2 provides a visual description of how
Yamabico’s tasks will be scheduled after the fore-

I 7 g ii 30 i 2 i 0.367 i 0.828 I

Table 3: Yamabico task utilization

runner task is added.
Thus, with a few calculations, we have success-

fully modified the schedule for Yamabico’s task set.
If we had been using a cyclical executive or an
interrupt-driven system, we would have had diffi-
culties meeting the responsiveness, schedulability,
and stability requirements of our system. It would
have also been necessary to modify timing depen-
dent code in the pre-existing tasks to allow for the
changes in the system’s timing requirements due to
the addition of the forerunner task.

0 mseo 10 msec 20 msec 30

rl

n

r3

T1 2T1 3T1 T2

Figure 2: Yamabico’s revised task Schedule.

3 Implementation

3.1 Yalmabico-11 Hardware Description

Yamabicck-11 is a wheeled, untethered autonomous
mobile robot developed over the last seven years at
the Naval Postgraduate School [6, 81. The primary
processing and control system is implemented on a
6U VMEbus system. In its current state, the system
consists of the following components:

0 An Ironics IV-SPRC SPARC microprocessor
with 16 Mbyte of DRAM,

coder,
0 A dual-axis motion controller and shaft dec-

0 A cuatom sonar processing board,

2807

Figure 3: The Yamabico autonomous robot.

9 An Imaging Technology, Inc. IMS color frame
grabber,

0 A serial communications board.

A lap-top computer is used as a real-time in-
put/output device. Yamabico’s size is 60(W) x
60(L) x 7 0 (H) centimeters, and weighs approxi-
mately 60 kilograms (Fig. 3).

The kinematic architecture is a differential drive
system used to control two drive wheels. Two
35 watt shaft-encoded DC motors drive 1/24 gear
boxes. The sensor system consists of twelve 40KHz
sonars mounted around the perimeter of the torso,
and a CCD camera mounted atop the VME rack.
The power system consists of two 12 volt gel-cell
batteries.

Yamabico is programmed by first downloading
object-code from a UNIX file-system. Next, The
Sparc board is boot-strapped from a file server via
the bootp protocol. The vehicle then operates as an
untethered (self-contained) autonomous robot.

3.2 Multi-Threaded Implementaion of

We have implemented a rate-monotonic scheduler
for Yamabico using lightweight processes (threads)
executing in a single, partitioned address space.
Conceptually, each of the threads of control can run
independently and concurrently. Since they share a
single address space, they can also share data.

Rate-Monotonic Scheduling

Although the fashionable programming model
has become multiple threads running in a common
address space, this tends to make debugging diffi-
cult, and code reliability becomes an important is-
sue. If the thread system can provide fast context
switching, existing operating system services such
as explicitly alloc&ted shared memory between a
team of cooperating processes can create a threaded
environment, without opening the Pandora’s box of
problems that a fully shared memory space entails.

We have implemented user-space threads, which
are managed entirely within the user address space.
User threads are, in general, faster because they
don’t cross protection boundaries. When a user-
space thread context-switches, the system must
save and restore register values, including the stack
pointer. Although this approach places the burden
of many operating system services on the threads
library, the performance enhancement from the re-
duction of overhead compared to a commerical op-
erating system is considerable. Another convenient
benefit of user-space threads is that all task creation
and scheduling decisions are done in the user pro-
cess, which provides a seamless means of integrating
a rate-monotonic scheduler.

4 Experimental Results

The fundamental operations of the threads system
are task creation and task switching. In order to
make a meaningful evaluation of our scheduling sys-
tem’s performance, equivalent programs using task
and UNIX Operating System processes were writ-
ten. Each of the first pair of programs repeat-
edly creates new trivial tasks (threads) and waits
for them to terminate. Each of the second pair of
programs creates a group of eight children, and re-
peatedly passed control from one task (thread) to
another. The programs were run on a SUN Sparc
4-490 under SunOS 4.1.3, and on a Silicon Graphics
Iris running IRIX 5.2. The results were that task
creation was 37 times faster with the threads library
than with SunOS, and task switching was 10 times
faster. The results are summarized in the following
table:

It is important to note that the thread system and
the UNIX Operating System are not equivalent, and
that the results of these performance measurements
do not imply that the threads system is 37 times
better than UNIX. We merely intend to illustrate
the performance iains available to the designers of
robotic systems when the overhead associated with

2808

Machine

SPARC 4490
MIPS R3000

Table 4: Microseconds to task create

UNLX Thread
Task Create Task Create

1128.3 38.6
187.4 4.6

Machine I UNIX
1 Task Sn-itch

Thread
Task Switch

Table 5: Microseconds to task switch

SPXRC 4-490 11 182.6
MIPS R3000 11 .53.9

commercial operating systems is not required.

J
16.7
4.6

5 Conclusion

In this paper, rate-monotonic theory was applied
to the problem of scheduling real-time tasks com-
prising the control system of an autonomous robot.
This approach allows the real-time software engi-
neer to seperate the analysis of the logical correct-
ness of the tasks comprising the control system from
the timing correctness of the task set. The rate-
monotonic scheduling approach greatly simplifies
the modification of the tasks comprising the robot’s
control system, allon-ing the addition, modification,
and deletion of tasks without great disturbance to
the timing correctness of the real-time dealines.
The authors have successfully implemented the
multi-threaded rate-monotonic scheduling system
on the autonomous mobile robot Yamabico-11 at
the S a d Postgraduate School.

[4] John P. Lehoczky, Lui Sha, J.K. Strosnider
and Hide Tokuda, “Fixed Priority Schedul-
ing Theory for Hard Real-Time Systems,” in
Foundations of Real-time Computing, A. M.
van Tilborg, Ed. Kluwer Academic Publishers,
1991, pp 6-8.

[5] Kanayama, Y., MacPherson, D.L., and Krahn,
G.W., “TWO Dimensional Transformations and
Its Application to Vehicle Motion Control and
Analysis,” Proceedings of International Con-
ference on Robotics and Automation, in At-
lanLs, Georgia, May 2-7, pp. 13-18, 1993.

[6] Y. Kanayama, Y. Kimura, F. Miyazaki and T.
Nog;uchi, “-4 Stable Tracking Control Method
for an Autonomous Mobile Robot,’’ Proc.
IEEE Intntnl Conference on Robotics and Au-
tom ation, pp. 1315-1317, Cincinnati, Ohio,
Ma:{ 13-18, 1988.

171 L. Slha, J. P. Lehoczky, and R. Rajkumar, ‘‘So-
lutions for Some Practical Problems in Priori-
tized Preemptive Scheduling,” IEEE Real-time
Systems Symposium, IEEECS Press, 1986,
pp. 181-191.

[8] Y . Kanayama and M. Onishi, “Locomotion
Functions in the Mobile Robot Language,
MML,” IEEE Int. Conf on Robotics and Au-
tomtation, (1991), pp. 1110-1115.

[9] Kartayama, Y., Kovalchik, J., Chuang, C., and
Kel be, F., “Motion Planning for Autonomous
Mobile Robots,” Proc. Autonomous Vehicles
in Mine Countermesures Symposium, in Mon-
terey, California, pp. 8-74 - 8-80, April 1995.

References

D. L. Ripps An Im.plemen.tation Guide to Real-
Time Programming, Englewood Cliffs, SJ:
Prentice Hall, 1989.

C. L. Liu and J. Layland. “Scheduling Algo-
rithms for Multiprogramming in a Hard Real-
Time Environment,” Journal of the ACM, vol.
20. no. 1, 1973. pp 46-61.

L. Sha and J. B. Goodenough. ”Real-Time
Scheduling Theory and Ada.” IEEE Com-
puter. vol. 23. no. 4, April 1990, pp. 53-62.

2809

