
A Firm Real-Time System Implementation Using Commercial Off-The-Shelf
Hardware and Free Software

Balaji Srinivasan, Shyamalan Pather, Robert Hill, Furquan Ansari, Douglas Niehaus
Electrical Engineering and Computer Science Department

University of Kansas
Lawrence, KS 66045

Abstract

The emergence of multimedia and high-speed networks
has expanded the class of applications that combine the
timing requirements of hard real-time applications with the
need for operating system services typically available only
on soft-real time or timesharing systems. These applica-
tions, which we describe as firm real-time, currently have
no widely-available, low-cost operating system to support
them. In this paper we discuss modifications we have made
to the popular Linux operating system that give it the abil-
ity to support the comparatively stringent timing require-
ments of these applications, while still giving them access
to the full range of Linux services. Using our firm real-time
system as a basis, we have developed the ATM Reference
Traffic System (ARTS) that is capable of recording and ac-
curately reproducing packet-level ATM traffic streams with
timing resolution in microseconds. The effectiveness of this
application, as well as the comparative ease with which it
was developed, illustrate the performance and utility of our
system.

1 Introduction

Until the fairly recent past, most real-time applications fit
into two broad categories. The first consists of those appli-
cations with soft real-time constraints which require timely
execution of tasks at coarse temporal resolution, but do not
produce catastrophic consequences if their deadlines are vi-
olated. The second group consists of hard real-time applica-
tions. These applications impose stringent timing demands
on their operating systems, with disastrous, and sometimes
fatal, consequences resulting from temporal errors.

Soft real-time applications can usually be supported by
generic desktop operating systems with slightly extended

This work was supported by grants from Sprint Corporation.

timing and scheduling capabilities. These extensions sel-
dom preclude the soft real-time applications from accessing
the services offered by these operating systems. Hard real-
time applications, in contrast, typically require specialized
operating systems that run on very specific hardware and
come at a significant cost. In order to meet the strict timing
requirements of hard real-time applications, these operating
systems can often provide only a very austere execution en-
vironment, offering few application services.

Recent developments in many areas, including multime-
dia and ATM networking, have spawned several applica-
tions that defy the binary hard/soft classification system.
Multimedia video applications, for example, exhibit com-
paratively strict timing requirements typical of hard real-
time applications, since they need to maintain very precise
display refresh rates. However, most hard real-time oper-
ating systems cannot, or can only partially, support such
multimedia applications because they require a wide va-
riety of system services. Our own research in the devel-
opment and performance evaluation of ATM networks has
included several applications with similar combinations of
fine grain timing requirements (typical of hard real-time
systems) with system service requirements typical of soft
real-time systems. These applications, which fall neither
into the hard nor soft real-time classes, might reasonably be
called firm. Furthermore, many of these applications exhibit
stringent cost constraints. We could find no system which
adequately satisfied the combination of temporal, service,
and cost constraints exhibited by this class of applications.

Another important characteristic of firm real-time ap-
plications is that they are seldom designed to be run
on dedicated real-time hardware. For example, a video-
conferencing application would typically be targeted for
use on a standard desktop system, in conjunction with
conventional applications such as word processors or web
browsers. Therefore, a crucial requirement of any operat-
ing system claiming to support firm real-time applications
is that it allow real-time and non-real-time tasks to coexist.

We have created the KU Real-Time (KURT) system

which satisfies the constraints of many applications in the
firm real-time category. KURT is based on the freely avail-
able Linux operating system, modified in several important
ways. First, by running the hardware timer as an aperiodic
device (as described in Section 3) we have increased the
system’s temporal resolution without significantly increas-
ing the overhead of the software clock. We call this the
UTIME extension to Linux, which alone increases the util-
ity of Linux for soft real-time applications.

The KURT system builds on top of UTIME, adding a
number of features. KURT enables the system to switch be-
tween three modes: normal mode, in which it functions as
a normal Linux system, mixed real-time mode, in which it
executes designated real-time processes according to an ex-
plicit schedule, serving non-real-time processes when the
schedule allows, and focused real-time mode, in which
only real-time processes are run. Focused real-time mode
is useful when KURT is being used as a dedicated real-time
system. When real-time applications share a generic desk-
top workstation, KURT’s mixed real-time mode is most of-
ten used, since it allows both real-time and non-real-time
processes to run. When in either real-time mode, real-time
processes can access any of the system services that are nor-
mally available to non-real-time processes. However, as
discussed in Section 4.2, the use of different subsystems
introduces different levels of scheduling distortion. While
many approaches to scheduling can be easily implemented,
we have found explicit scheduling to be the most appropri-
ate for our current applications.

One such application is the ATM Reference Traffic Sys-
tem (ARTS), described further in Section 3. This appli-
cation can record and generate packet-level ATM traffic
streams with microsecond accuracy. ARTS uses KURT’s
scheduling abilities in its traffic generation module by plac-
ing packet transmission events in an explicit KURT sched-
ule. KURT and closely related approaches are also being
applied in our lab to a range of problems, including syn-
chronized distributed real-time computation, the implemen-
tation of a software ATM switch with precise rate control,
and support for multimedia applications.

We believe KURT fills an important gap in the existing
spectrum of real-time systems by providing a low cost sys-
tem with fine-grain temporal resolution, capable of satisfy-
ing firm real-time performance constraints. However, the
generic Linux services have not been specifically adapted
to real-time execution and are thus sources of scheduling
distortion. Such adaptations are part of the future work we
intend to do. In spite of this limitation, KURT has pro-
vided excellent support to our firm real-time applications
for which no other system was as appropriate. In addition,
it provides a well structured environment within which to
investigate and resolve the sources of scheduling distortion.

In the next section we discuss related work in real-time

operating systems. In Section 3 we describe the implemen-
tation of the UTIME Linux extension, the KURT system on
top of it, and the implementation of ARTS. The experimen-
tal results from our tests of UTIME, KURT, and ARTS are
presented in Section 4 and in Section 5 we discuss our con-
clusions and possible future work. We have not included a
detailed description of the KURT application programming
model, as this has been discussed fully elsewhere [8].

2 Related Work

The recent proliferation of firm real-time applications
has motivated several efforts to produce a suitable operat-
ing system for them. In this section, we discuss a few of
the systems which share some of the characteristics of our
system.

The Rialto [5] operating system, developed at Microsoft
Research, was designed from the beginning to support the
type of applications that we classify as firm real-time. Ri-
alto real-time applications specify their time constraints and
interact dynamically with the system to achieve their de-
sired scheduling properties. Rialto provides a wide array of
operating system services to its real-time tasks and these are
accessed through a per-machine resource planner. In a man-
ner similar to the one we have employed, Rialto runs the
hardware timer as an aperiodic device, allowing for much
finer timing resolution than is typically available in generic
operating systems. While Rialto has been successful in its
development context, it suffers from two main drawbacks.
First, it is an entirely new operating system and hence has
no existing base of application software. This limits its ap-
plicability in production environments. Also, it is a propri-
etary system, making it unsuitable for use in many research
environments, where low cost and access to source code are
essential.

Stanford’s SMART system [7] is a real-time sched-
uler for multimedia applications, implemented within the
Solaris operating system. It uses a weighted fair queu-
ing scheme to ensure that real-time tasks meet their dead-
lines, while at the same time providing acceptable levels of
responsiveness to non-real-time tasks. It shares with our
system the advantage of being implemented inside a full-
featured, widely used operating system and thus can be eas-
ily deployed in production environments. However, it uses
a periodic clock, limiting the timing resolution it can offer.

Real-Time Linux (RT-Linux), developed at New Mexico
Tech [3], is another system based on the Linux. Instead of
improving the abilities of Linux directly as KURT does, RT-
Linux implements a small real-time executive which runs
a non-real-time Linux kernel as a completely preemptable,
low-priority task. This approach is similar to the one used at
the University of North Carolina to allow the IBM Micro-
kernel to coexist with a simple real-time kernel on a sin-

gle system [4]. The RT-Linux model requires that real-time
applications be split into real-time and non-real-time parts.
The real-time parts run under the real-time executive and
the non-real-time parts under the low-priority Linux kernel.
Communication between the two environments is supported
by lock-free queues and shared memory, but the parts run-
ning under the real-time executive cannot access any of the
Linux services.

This approach is interesting and useful for applications
fitting the RT-Linux model. It is not, however, appropri-
ate for the class of applications KURT addresses, precisely
because these applications require a combination of access
to system services and support for real-time constraints,
though these constraints are often less stringent than those
RT-Linux can support. For example, if ARTS were imple-
mented under RT-Linux, then its real-time module would
have to be able to send an ATM packet into the network.
This is not possible, however, because access to the net-
working subsystem of Linux is not supported by RT-Linux.

There are also several commercially available systems,
including LynxOS [1] and QNX [2], which offer real-time
performance and a number of services to the applications
they run. While these systems are attractive from the point
of view of features, they are too costly to be used in research
institutions operating on limited budgets.

3 Implementation

KURT is based on the Linux operating system, a freely
available, popular Unix clone. Linux was chosen because
it enabled us to meet two important design goals. First, we
wanted our system to be easy to integrate into existing com-
puting environments. In order to achieve this goal, we had
to target an operating system that people already use. Over
the past few years, Linux has grown exponentially in pop-
ularity, leading to the development of a broad software and
user base. Also, since low cost was a primary design goal,
Linux was an ideal choice as it runs on commercial off-the-
shelf hardware and is distributed without charge.

In order to implement KURT, several changes had to
be made to Linux. First, its temporal granularity had to
be refined, since many firm real-time applications need to
track time at a resolution much higher than that convention-
ally used. In the ARTS application, for example, schedul-
ing resolution on the order of 10 microseconds is required.
This makes the standard Linux software clock resolution of
10 milliseconds (1 millisecond on the DEC Alpha architec-
ture), and that of most other systems, unacceptable. In addi-
tion, the standard Linux timesharing scheduler was unsuit-
able for firm real-time applications, so we had to implement
a scheduler that would give firm real-time tasks the prefer-
ential treatment required to satisfy their timing constraints.

3.1 Implementation of UTIME

In order to increase the resolution of the Linux software
clock, we had to alter the basic mechanism by which it is
implemented. In standard Linux, a hardware timer chip is
programmed to interrupt the CPU at a fixed rate. Each time
the CPU is interrupted, the kernel updates its software clock
to indicate the passing of another tick and checks if there
are any scheduled events that are due for processing. Thus
the software clock is nothing more than a running count of
the number of ticks, or hardware timer interrupts, that have
passed since the kernel was started. The length of time be-
tween each software clock tick is referred to as a jiffy. Since
the kernel only checks its list of pending scheduled events
at each timer interrupt, the length of time between interrupts
(or the length of each jiffy) is the smallest meaningful unit
of time with which events can be scheduled. Thus the length
of a jiffy determines the kernel’s timing resolution.

A naive approach to increasing the timing resolution
would be to simply program the timer chip to interrupt the
CPU at a higher frequency. This would reduce the length of
a jiffy and therefore increase the software clock resolution.
However, since the timer chip would regularly interrupt the
CPU, irrespective of whether any events were scheduled to
occur at the time of each interrupt, this approach leads to
unnecessary overhead.

Our solution to the problem of increasing the kernel’s
timer resolution is based on the following observation: there
is a crucial difference between the temporal resolution and
the frequency of events. In other words, even though firm
real-time applications schedule events with microsecond
level deadlines, events are rarely scheduled to occur every
microsecond. To support such applications, what is needed
is a mechanism by which timer interrupts are allowed to oc-
cur at any microsecond, not necessarily every microsecond.

Our system departs from the common practice of using
the timer chip to interrupt the CPU at a fixed rate. Instead,
the timer chip is programmed to interrupt the CPU in time
to process the earliest scheduled event. When an interrupt
is serviced, the kernel checks its list of pending events to
see when the next event is due for processing and programs
the timer chip to interrupt it in time to service that event.
Thus the CPU is interrupted only when it needs to be and
not at regular intervals. In this simple form, our scheme
eliminates the timer interrupts at which no events are due for
processing. Since the timer chip can be programmed with
microsecond accuracy, we effectively achieve microsecond
resolution.

In this simple version of our system, the count of ten
millisecond jiffies is no longer updated, since there are no
regular ten millisecond interrupts at which to do so. This
presents a problem since there are several kernel subsys-
tems that assume, both implicitly and explicitly, that the

jiffy counter is being updated at regular intervals. To keep
these systems working, we had to devise a way to reproduce
this periodic “heartbeat” in the absence of regular, periodic
interrupts. To do this, we determine the correct jiffy count
value at each timer interrupt by computing the number of
CPU cycles elapsed since boot time. This computation is
performed using the time stamp counter (TSC), a 64-bit reg-
ister that increments at the clock rate of the 200 MHz Intel
Pentium Pro processor used in our test system.

When the computed jiffy counter increments, we per-
form the various activities that are usually done by the stan-
dard kernel during each timer interrupt. Since our interrupts
occur with little regularity, we could miss one or more jiffy
boundaries. To overcome this problem, when reprogram-
ming the timer chip to trigger the next interrupt in time to
process the next event, we check to see if that event occurs
after the next jiffy counter increment would have occurred.
If this is found to be the case, then we schedule an interrupt
to occur just in time to increment the jiffy counter. This
introduces some interrupts at which no events are due for
processing, but keeps all kernel subsystems, including the
software clock, working as normal. The implications of this
scheme, in terms of system overhead and scheduling distor-
tion, are discussed in Section 4.

3.2 KURT Scheduler

As discussed earlier, in addition to increasing the tem-
poral resolution of Linux, we also had to implement a new
scheduling algorithm for firm real-time applications. To the
FIFO, round-robin, and normal timesharing scheduling al-
gorithms available in standard Linux, we have added the
KURT scheduler. This is an explicit plan scheduler, re-
quiring real-time applications to state explicitly the times
at which events are to occur. We have also introduced the
concept of real-time modes, in which those processes that
are marked as using the KURT algorithm are scheduled,
either exclusively (focused real-time mode) or in conjunc-
tion with non-real-time processes (mixed real-time mode).
When operating in focused real-time mode, normal non-
real-time processes cannot interfere with the timely execu-
tion of real-time processes, but the real-time processes still
have full access to all Linux services such as network pro-
tocol implementations and hardware device drivers.

The KURT system consists of real-time kernel modules
which perform certain application-specific activities and
a base system which invokes these modules at scheduled
times. Applications pass the KURT base system a sched-
ule file that lists the times at which certain real-time kernel
modules are to be invoked. These modules execute in ker-
nel mode and can therefore access devices, as well as other
parts of the kernel, in ways that would not be permitted to
normal user-level processes. Furthermore, new application-

specific modules can be added to a running kernel at any
time.

The module-centric approach used by the KURT sched-
uler lends itself well to many types of real-time applica-
tions. For example, in the ARTS system described earlier,
we implemented a real-time module that could transmit an
ATM packet. The ARTS traffic generator then simply con-
sisted of a program that would generate a KURT schedule
file specifying the times at which to invoke this ATM trans-
mit module, together with a program that would pass this
schedule file to KURT and start the scheduler. The fact
that the transmit module could run in kernel mode added
greatly to the effectiveness of our system, because packets
could be written directly to the network interface card. If
this application were written as a user-level process, then
unpredictable delays would be incurred while copying data
between user and kernel space and while performing con-
text switches.

Although applications such as ARTS are well-suited to
a real-time system based on kernel modules, there are other
applications that work better as a group of coordinated user
processes that are scheduled in real-time. To facilitate such
applications, the KURT system includes the process mod-
ule. This is a built-in real-time kernel module whose func-
tion is to switch context to a specified user process. A
schedule file for an application that consists of real-time
user-level processes simply specifies the times at which the
built-in process module should be invoked and to which
user-level process context should be switched. Since, from
the perspective of the KURT scheduler, the process module
is the same as any other real-time module, the schedule file
for such an application is written in exactly the same format
as that used for an application such as ARTS.

Explicit scheduling using schedule files as described
above works well for many real-time applications. How-
ever, some applications have periodic execution flows,
wherein a certain section of code is executed repeatedly at
a fixed time interval. For these applications, explicit event
times can be specified, but this approach is not natural. A
more attractive approach is to allow these applications to
specify the length of one period and then be scheduled by
KURT to run once every period. To accomplish this, a peri-
odic application can switch KURT into periodic mode and
use a system call to specify its period. The application can
then use a KURT system call to suspend its execution at
the top of its periodic loop. Once the scheduling is begun,
KURT will allow the application to run and cause the pe-
riodic loop to execute. Once an iteration is complete, the
application should suspend itself once again and wait for
KURT to re-activate it for the next iteration.

4 Evaluation

To evaluate our system, we chose to test each piece in-
dividually and then test the system as a whole by means of
an application. In this section, we will present the results
of the tests we ran to measure the overhead of the UTIME
system, the associated clock drift that it introduces, and the
accuracy of the KURT scheduler. In addition, we will show
that these systems worked together to lend the ARTS traffic
generator a very high degree of accuracy, as evidenced by
tests performed using an external network analyzer.

4.1 UTIME Tests

As stated in section 3.1, running the hardware timer as an
aperiodic device allows the UTIME system to achieve sig-
nificant gains in temporal resolution without dramatically
affecting the system overhead. Since most of the UTIME
implementation centers around changes to the Linux timer
interrupt handler, comparing the processing time of a timer
interrupt under UTIME with that of a timer interrupt in stan-
dard Linux gives a quantitative measure of the overhead re-
sulting from UTIME.

We measured the processing time of timer interrupts us-
ing the TSC, described in Section 3.1. Approximately 8000
timer interrupts were measured, first on standard Linux and
then on Linux with the UTIME modifications applied. Ta-
ble 1 shows the results. Without UTIME, timer interrupts
take 1 microsecond to process on average and virtually all
take less than 8 microseconds. With UTIME in place, the
average timer interrupt requires just over 7 microseconds of
processing time and 99% of all timer interrupts require 22.5
or fewer microseconds. It should be noted that the times
described here do not include the time required to process
any scheduled events: the timer interrupt handler simply
checks which events are due for processing and marks them
as such.

The exact value of the timer overhead is less important
than the fact that it is greater under UTIME than under stan-
dard Linux. This increase can be attributed to the fact that
timer interrupts in UTIME do not occur at regular inter-
vals and therefore some amount of extra computation is re-
quired in the handler to determine the new value to load
into the timer chip to trigger the next interrupt. This is not
the case in standard Linux because the timer chip is simply
programmed, during system boot-up, to interrupt the CPU
at a fixed rate. Even though the actual time required to pro-
cess timer interrupts using UTIME increases, this penalty is
incurred at most once every 10 milliseconds if no microsec-
ond events are scheduled. Thus, the overhead presented by
the UTIME modification is, on average, about 0.073%.

In addition to affecting the system overhead, the UTIME
modifications also affect the software clock drift. In stan-

Mean Std. Dev. Min 99% Max
Standard 1.0 s 1.2 s 0.5 s 7.9 s 13.1 s
UTIME 7.3 s 2.8 s 6.3 s 22.5 s 31.7 s

Table 1. Timer Interrupt Processing Times for
Standard Linux and Linux with UTIME

dard Linux, the count of ten millisecond jiffies is the pri-
mary means by which the kernel tracks time. Unfortu-
nately, the assumed jiffy length is rarely correct, because
the hardware timer chip has a finite resolution and the small-
est value by which it can be incremented usually does not
divide evenly into ten milliseconds. The accumulation of
error due to the imprecision in the jiffy length causes the
software clock to drift over time. Since timer interrupts do
not occur at regular intervals in UTIME, a different method
is employed to update the jiffy counter. At each interrupt,
a TSC reading is taken and used to compute the number
of cycles elapsed since boot time. Using the pre-computed
number of cycles per second, the number of elapsed cycles
is converted into time and used to update the jiffy counter
appropriately.

It would seem that this method would be more precise
and hence lead to less clock drift than is observed in stan-
dard Linux, but this is not the case. As the lines labelled
“UTIME” and “Standard Linux” in Figure 1 show, the two
systems show similar clock drift. This is explained by the
fact that even though UTIME uses the more accurate TSC
to track time, it still uses the timer chip at boot time to de-
termine the number of CPU cycles per second and thus cal-
ibrate the TSC.

0 2 4 6 8 10 12 14

0

0.05

Hours

D
ev

ia
tio

n
(s

ec
on

ds
)

Standard Linux

UTIME

Standard Linux and UTIME with NTP

Adjusted UTIME

Figure 1. Clock Drift

In our lab we use XNTP, an implementation of the Net-
work Time Protocol (NTP) and associated tools to main-

Accumulated Deviation
Machine A 145.0ms
Machine B -137.8ms
Machine C -235.4ms

Table 2. 14-Day System Clock Deviation Using
Adjusted UTIME

tain clock synchronization among workstations [6]. This
works equally well for both unmodified Linux and UTIME
as shown in Figure 1. These lines lie essentially on top of
one another and appear to be a single line labeled “Stan-
dard Linux and UTIME with NTP”. As the figure shows,
the clock drifts initially, but once NTP begins to take effect,
the deviation is soon corrected. The line labelled “Adjusted
UTIME” in Figure 1 shows the clock drift in a UTIME sys-
tem where the number of cycles per second is adjusted to
the correct value using an external reference instead of the
timer chip. The figure shows that in this case, the clock
drift is minimal over the 14-hour testing period. This illus-
trates that with proper calibration, our method of updating
the jiffy count using the TSC introduces very little accumu-
lated clock deviation.

To further investigate this point, we monitored the
amount of deviation in the software clocks of three different
UTIME machines over a 14-day period. These machines all
ran the version of UTIME in which the number of cycles per
second was calibrated accurately against an external refer-
ence, as described above. The results shown in Table 2 indi-
cate that the accumulated deviation is minimal, amounting
to less than one-half second per month.

4.2 KURT Scheduler Tests

To test the effectiveness of the new firm real-time
scheduling modes, we measured the difference between the
times at which real-time kernel modules were scheduled to
be invoked and when they were actually invoked. Figure 2
summarizes the results of 10,000 such measurements. As
mentioned in Section 3.2, some real-time applications use
the built-in process module to schedule user processes. As a
reflection of the effectiveness of KURT in scheduling these
processes, Figure 2 also shows the distribution of differ-
ences between scheduled process module invocation times
and the times at which the appropriate user processes began
running.

The tests were performed in both focused and mixed
real-time modes. Table 3 shows the values below which
99.5% of the differences between actual and scheduled
times fell. The maximum value in each category indicates

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Difference between scheduled and actual event time (microseconds)

%
 o

f e
ve

nt
s

Focused: Kernel Module
Focused: User Process
Mixed: Kernel Module
Mixed: User Process

Figure 2. Distribution of Differences between
Scheduled and Actual Event Times

that a small percentage of events are still substantially late.
This is most likely caused by interrupt service routines ex-
ecuted on behalf of non-real-time system services and pro-
cesses in mixed real-time mode, which block interrupts for
various periods of time. The fact that the distortion is in-
creased under the mixed real-time mode supports this hy-
pothesis.

The scheduler’s performance, illustrated in Figure 2, can
be improved by trading accuracy for event service over-
head. For example, consider the statistic from Table 3 stat-
ing that 99.5% of kernel module events occur within 19 mi-
croseconds of their scheduled times. In order to make these
99.5% of kernel module events occur within a few (3 to 5)
microseconds of their scheduled times, we could schedule
them 19 microseconds early and then busy-wait, monitor-
ing the TSC, in the case of events requiring less time than
19 seconds to be dispatched. Slightly less waiting will be
required if the cutoff point is chosen below 99.5%, but in
any case, this method introduces idle cycles into the event
service overhead. This might be a worthwhile design trade-
off, however, for applications with scheduling constraints
more stringent than their utilization constraints.

In order to characterize the magnitude and source of the
distortion introduced by blocked interrupts, we measured
the lengths of the time periods during which interrupts were
disabled in the various subsystems of a standard Linux ker-
nel running under heavy disk load . The distribution of the
lengths of these periods is shown in Table 4. It should be
noted that these numbers may vary substantially with the
hardware configuration. They also vary with the load and
the amount of stress that it places on the various kernel sub-

These tests were performed on an 200 MHz Intel Pentium Pro
machine

Kernel User
Mode 99.5% Max 99.5% Max

Focused 19 s 192 s 35 s 210 s
Mixed 44 s 590 s 81 s 793 s

Table 3. Differences Between Scheduled and
Actual Event Times Using KURT

Subsystem Min Mean Max
Disk 0.35 s 6.50 s 407.62 s

Memory 0.34 s 0.60 s 10.31 s
Network 0.33 s 0.37 s 3.26 s
Process 0.33 s 1.11 s 43.66 s
Timer 0.35 s 2.33 s 52.98 s
TTY 0.34 s 0.60 s 8.79 s
Other 0.33 s 0.39 s 82.61 s

Table 4. Distribution of Intervals During Which
Interrupts Were Disabled in a Standard Linux
Kernel

systems. Also, it is important to observe that the maximum
values shown in Table 4 do not represent an upper bound
on the scheduling distortion introduced by blocked inter-
rupts because several blocking periods can occur one after
another with little or no spacing between them. However,
they do show that most interrupts are relatively short, and
that the disk driver is the most immediate area for further
investigation.

As a further test of the scheduling quality, we used a
hardware ATM cell analyzer to observe traffic streams gen-
erated by ARTS. The observed packet interarrival times
closely resembled those that ARTS was told to generate.
In fact, with a packet scheduled for transmission every 500
microseconds, 99.7% of all packets arrived within 1% of
their scheduled times.

To test the KURT scheduler’s periodic mode, we wrote a
KURT application that was supposed to run once every 10
milliseconds. We also wrote a version of this application
that would use only the timing provided by standard Linux
running its FIFO scheduler (which claims to offer soft real-
time performance). By comparing the effectiveness of these
two applications with respect to the actual length of time
between executions, we were able to evaluate the gains in
scheduling accuracy provided by KURT.

Tests were performed in the KURT and non-KURT cases
using first 10, and then 30 concurrent executions of the ap-
plication. Beyond 30, new attempts to invoke the periodic

application were rejected by the KURT scheduler, since it
would not have been able to meet the resulting timing de-
mands. Figure 3 shows the distribution of differences be-
tween the desired and actual execution periods. As can be
seen, the Linux FIFO scheduler introduces essentially an
order of magnitude more scheduling variation than does the
KURT scheduler and degrades significantly with increased
load. The KURT scheduler shows almost no degradation in
performance when the number of concurrent executions is
raised from 10 to 30. This is evident from the fact that the
lines for these two cases lie almost exactly on top of one
another.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Difference between desired and actual periods (milliseconds)

%
 o

f e
ve

nt
s

Figure 3. Performance of the FIFO and KURT
Schedulers Executing Periodic Processes

5 Conclusions and Future Work

With the increasing popularity and availability of multi-
media and high-speed networking, a new class of applica-
tion software has emerged. The applications in this class
require many of the services offered by generic timesharing
or soft real-time operating systems, but have timing con-
straints characteristic of hard real-time applications. Appli-
cations of this nature cannot be described as either hard or
soft real-time, so we have chosen to call them firm real-time
applications. In addition to the unique computing require-
ments presented by firm-real time applications, many are
developed and used under significant budgetary constraints,
precluding the use of expensive commercial hard real-time
operating systems to support them.

We have developed the KURT system, based on the well-
known and widely-used Linux operating system that offers
a broad range of services to the applications it runs. We
were able to increase the temporal resolution of Linux with-
out causing a significant increase in system overhead. The

new scheduler that KURT adds to Linux is able to achieve
high levels of scheduling accuracy and can coexist with the
other currently available schedulers. As evidenced by the
ARTS application, which makes use of existing ATM net-
working services offered by Linux, the changes we made do
not prevent firm real-time applications from using the exist-
ing operating system services. For these reasons, KURT
successfully transforms Linux into a firm real-time operat-
ing system. In addition to the ability to support firm real-
time applications, our system has the added advantage of
low cost, since it runs on commercial off-the-shelf hardware
and is based on free software.

As the evaluation shows, KURT was able to demonstrate
firm real-time scheduling capabilities, although limitations
remain, in the form of sources of scheduling distortion. It
should be noted, however, that the frequency of distortions
in our system is low and falls well within the limits appro-
priate to a number of interesting applications. Since most
distortions occur because the generic operating system ser-
vices made available to applications by KURT often intro-
duce unpredictable delays, developers need to experiment
and discover which kernel subsystems are suitable for use
in their applications.

Future work will include investigations into sources of
scheduling distortion that degrade real-time scheduling ac-
curacy. The kernel sub-systems that are found to gener-
ate this latency might have to be re-designed to work more
predictably. The disk driver subsystem is the obvious first
choice for this. We will explore the use of alternate schedul-
ing methods within the KURT framework and intend to use
the system as the foundation for development of a real-time
ORB. It is also interesting to consider how the methods used
to implement KURT might be combined with those used for
RT-Linux to produce a system capable of supporting and
even wider range of applications.

References

[1] LynxOS - Hard Real-Time OS Features and Capabilities.
WWW: http://www.lynx.com/products/ds lynxos.html. Ob-
tained November 28, 1997.

[2] QNX Realtime OS.
WWW: http://www.qnx.com/product/qnxrtos.html. Obtained
November 28, 1997.

[3] M. Barabanov and V. Yodaiken. Introducing Real-Time
Linux. Linux Journal, Issue 34, February 1997.

[4] G. Bollella and K. Jeffay. Support for Real-Time Computing
Within General Purpose Operating Systems. In Proceedings
of the IEEE Real-Time Technology and Applications Sympo-
sium, pages 4–14, May 1995.

[5] M. Jones, J. Barrera III, A. Forin, P. Leach, D. Rosu, and
M. Rosu. An Overview of the Rialto Real-Time Architec-
ture. In Proceedings of the Seventh ACM SIGOPS European
Workshop, pages 249–256, September 1996.

[6] D. L. Mills. Internet Time Synchronization: the Network
Time Protocol. IEEE Transactions on Communications,
COM-39:1482–1493, October 1991.

[7] J. Nieh and M. Lam. The Design of SMART: A Sched-
uler for Multimedia Applications. Technical Report CSL-TR-
96-697, Computer Systems Laboratory, Stanford University,
June 1996.

[8] B. Srinivasan. A Firm Real-Time System Implementation Us-
ing Commercial Off-The-Shelf Hardware and Free Software.
Technical Report 11510-02, Information and Telecommuni-
cation Technology Center, University of Kansas, February
1998.

