
Robust Algorithm for
Real-Time Route Planning

ROBERT J. SZCZERBA

PEGGY GALKOWSKI

IRA S. GLICKSTEIN

NOAH TERNULLO
Lockheed Martin Federal Systems

Route planning for intelligent guidance and navigation

systems is an extremely complex problem with both military and

commercial applications. Standard route planning algorithms

usually generate a minimum cost route based on a predetermined

cost function. Unfortunately, such a solution may not represent a

desirable route for various mission scenarios. We present a novel

route planning approach to generate mission-adaptable routes

in an accurate and efficient manner. The routes are computed

in real-time and are able to take into account various mission

constraints including: minimum route leg length, maximum

turning angle, route distance constraint, and fixed approach

vector to goal position.

Manuscript received September 18, 1998; revised October 31, 1999;
released for publication February 2, 2000.

IEEE Log No. T-AES/36/3/07805.

Refereeing of this contribution was handled by T. Froome.

Authors’ address: Lockheed Martin Federal Systems, Mail
Drop 0210, 1801 State Route 17C, Owego, NY 13827, E-mail:
(robert.j.szczerba@lmco.com).

0018-9251/00/$10.00 c° 2000 IEEE

I. INTRODUCTION

Route planning is an important problem
for a number of diverse applications including
intelligent transportation systems, space applications,
autonomous robotics, and military guidance and
navigation systems [1, 4, 5, 9—11]. We address the
routing problem in the context of route planning
for aircraft (rotorcraft or fixed-wing, manned or
unmanned), though our approach can be easily
extended to the other applications outlined above.
Standard route (in this paper the terms “route” and

“path” are used interchangeably) planning algorithms
usually generate a minimum cost solution based
on a predetermined cost function (relating factors
such as terrain features, threat locations, mission
requirements, etc.). Unfortunately, such a solution may
not represent a “desirable” route for many mission
scenarios. A desirable route can be considered a route
that does not: 1) exceed the physical limitations of an
aircraft, 2) exceed the threshold comfort level and/or
workload of a pilot, or 3) violate mission scenario
parameters. In particular, many missions require
several constraints on the resultant path, such as the
following.

1) Minimum Route Leg Length: This constrains
the route to be straight for a predetermined minimum
distance before initiating a turn. Aircraft traveling
long distances generally do not want to weave and
turn constantly because this adds to pilot fatigue and
increases navigational errors.
2) Maximum Turning Angle: This constrains the

generated route to only allow turns less than or equal
to a predetermined maximum turning angle. Such
a constraint may be aircraft or mission dependent.
For example, aircraft flying in tight formation cannot
make severe turns without a greater risk of collision.
3) Route Distance Constraint: This constrains

the length of the route to be less than or equal to a
preset maximum distance. This corresponds to a finite
fuel supply or a fixed time at which the goal must be
reached.
4) Fixed Approach Vector to Goal Position:

Constrains the route to approach the goal position
from a predetermined approach angle. This could
correspond to the approach vector for a runway or
for a specific mission objective.

Furthermore, these constraints need not be fixed,
and may vary during the course of the mission (i.e.,
a shorter leg length may be needed at the end of
a mission than at the start). An “adaptable” route
planner is needed to generate routes based on aircraft
limitations and/or mission parameters. The problem
of creating such a route planner is quite difficult.
In fact, an optimal solution to the general case
of this problem is considered to be NP-complete
in nature (corresponding to a particular class of

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000 869

problems in which no polynomial time solution
is known to exist) [2]. Even if such an optimal
solution could be found (which is highly unlikely),
the time to converge to a solution and the memory
required would be completely unrealistic for real-time
applications.
We present an algorithm which allows for the

generation of desirable (as good or better than a
pilot could generate) solutions in real-time (much
faster than a pilot could do), using a finite amount
of memory, while allowing the variation of the four
mission parameters outlined above. This algorithm
was originally developed for the Rotorcraft Pilot’s
Associate (RPA) Program, under contract to Boeing
and U.S. Army AATD. The RPA system is designed
architecturally as an intelligent Cognitive Decision
Aiding System (CDAS) that sits on top of an existing
avionics package. CDAS allows pilots to operate
attack, scout, and special operations aircraft more
efficiently than could previously be achieved. The
route planning algorithm discussed here is a key
component of the RPA system. More details about
the complete RPA program can be found in [1]. An
extended abstract of this route planning approach can
be found in [12].
Since most of the DoD-related operational route

planners are either classified and/or proprietary, we
cannot directly compare our planner to these [6—8].
However, after discussions with our DoD customers,
we are confident that no existing route planner has
the capability to provide solutions in the order of
30 seconds with the constraints discussed above.
One operational route planner, The Common Low
Observable Auto-Router (CLOAR) is used on aircraft
which are considered “low observable” or stealth, such
as the F-117A, the B-2, and the Joint Air-Surface
Stand Off Missile (JASSM). CLOAR is a classified
product, but is purported to determine figure of merit
costs as it routes and determine least threat cost route
based on inputs. CLOAR is deployed as a module
within the Air Force Mission Support System, which
is used for premission planning on the aforementioned
weapons systems. CLOAR route planning times are
on the order of hours [7, 8]. Thus, it cannot be used
as a real-time in-flight mission planner. Another route
planner, the Automated Routing and Maintenance
System (ARMS), computes sortie effectiveness as
part of the preplanning process, and analyzes data
after a sortie has been flown. Like CLOAR, ARMS
does not have real-time, in-flight capabilities and
cannot address the problem of real-time in-flight
constraint-based route planning [6].
An outline of the rest of this paper is as follows.

Section II provides background information necessary
for understanding our approach. The details of our
route planner, called Sparse A* Search (SAS), are
provided in Section III, with implementation results
given in Section IV. A summary and discussion

of future work is presented in Section V with
acknowledgments given in Section VI.

II. PRELIMINARIES

Most geometrical route planning algorithms can
be considered either grid-based or graphic-based in
nature, each with their own associated advantages
and disadvantages. Graph-based approaches are
usually very accurate but may suffer from long
convergence times (possibly even exponential in
nature). Grid-based approaches generally are able
to converge in real-time, but have difficulty when
combining metrics and/or route constraints (such
as maximum route distance, maximum turning
angle, etc.). Surveys of different route planning
approaches can be found in [4, 5] and are not
discussed here. Our approach is a novel combination
of these two techniques, allowing the generation of
mission-adaptable routes in both an accurate and
efficient manner. The uniqueness of our approach
is the combination of functionality and efficiency,
which sets it apart from other route planners. This
result is extremely important in the area of intelligent
guidance/navigation systems, especially for military
applications. Furthermore, our approach is very robust
in nature, which allows it to be easily modified and
expanded for use in a number of different mission
scenarios.
A digitized grid consisting of square cells of equal

size represents the environment in which the route
planning is performed. The size of the environment
(or path planning workspace) is m£ n grid cells. Most
miliary applications use Digital Terrain Elevation Data
(DTED) as input to their route planners. DTED is
grid-based in nature, and hence most military route
planners are also grid-based. A route is planned from
a given “start” grid cell location to a “goal” grid cell
location. Each grid cell corresponds to a particular
location in the environment. A cost estimation step
establishes a “cost” value for a particular cell,
corresponding to the cost incurred by traveling
through that particular region. This cost value can be
used to represent various terrain elevations, cultural
features (road, towns, etc.), threat exposure, weather
conditions, or any number of other factors. This set of
cost values is known as the map cost (MC) array and
is also of size m£ n [1, 9, 12].
A cost minimization step takes the MC array as

input and generates a best cost (BC) array as output.
Each cell in the BC array contains the cost of the
cheapest (minimum cost) path to reach the goal from
that particular cell. Movement in the BC array is
allowed to any of the neighboring eight cells. By
continually moving to the adjacent cell in the BC
array with the lowest cost, a minimum cost path
to the goal from a particular cell can be computed.
The BC value of the grid cell of the start position

870 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000

Fig. 1. MC and BC values in grid-based environment.

Fig. 2. Example of min-heap with 7 elements.

contains the total cost of the walking path from
the start to the goal. The walking path is defined
as the minimum cost path to the goal if one ere
moving over the ground and were not constrained
by a maximum turn angle, distance limitations, etc.
A simple example of generating a walking path
from the BC array is shown in Fig. 1. The upper
value of each grid cell represents the MC value
from the MC array. The BC values are shown as
the lower value in each grid cell. The walking path,
represented by the circled entries, corresponds to
continually moving to the cell with the lowest BC
value until the goal position is reached. There are
a number of different ways to efficiently generate
the BC array, any of which can be used [5, 9].
Note that for the simple example shown in Fig. 1,
we are not considering the different costs associated
with movement to horizontally/vertically adjacent cells
versus movement to diagonally adjacent cells (i.e., a
cost weighting factor of 1.0 versus 1.4, respectively).
To efficiently explore the search space, a data

structure known as a min-heap is used in our approach
to store the cost of various route segments. A
min-heap is a binary tree whose keys (value stored at
a node) satisfy the following heap property: “the key
of every node is less than or equal to the key of any
of its children.” By the transitivity law, the min-heap
property implies that the key of every node is less
than or equal to the key of all the descendants of that
node [2]. An example of a simple min-heap is found
in Fig. 2. The root, corresponding to the minimum
element in the heap, is indicated. Min-heap data
structures are useful for implementing the following
two operations.

Insert(x): Inserting a node x into a heap with n
elements in O(n logn) time.
Remove Min(x): Removing the minimum element

from a heap (found at the root) and reestablishing the
heap property for the remaining elements in O(n logn)
time.

Fig. 3. Approaches based on turn point removal techniques may
not be able to produce low-cost flyable route.

One common approach for incorporating
additional route constraints (e.g., minimum leg
length, maximum route length, etc.) into a search
process involves “straightening out” the generated
“walking path” until the additional constraints are met.
Unfortunately, such an approach will not necessarily
lead to a good solution. With such an approach,
the generated path (from the BC array) is traversed
and a check is made at each turnpoint to see if the
turnpoint can be removed (joining the previous and
next turnpoints with a straight line) without increasing
the overall cost of the path by more than a preset limit
(e.g., 10%). The idea is that by removing turn points,
the path becomes straighter and thus may be able to
meet the imposed route constraints. This approach
has many limitations. The primary drawback is that
there may be very few possible turn locations that
can be removed which do not increase the path cost
by a significant amount. Furthermore, with such an
approach, there is no way to guarantee a minimum
leg length or to impose a maximum turning angle
on the generated path without possibly traversing
high cost threat areas. An example of this drawback
can be seen in Fig. 3. Assume that Path A has a
slightly lower total cost than that of Path B. Thus, a
turn point removal algorithm would seek to remove
turn points from Path A to create a more “flyable”
path. Unfortunately, Path A is a winding path and the
removal of any turn points would result in traversing
a high threat area (indicated by the shaded regions).
Path B would be the logical choice since it has
fewer turns and a longer leg length than Path A.
Unfortunately, this type of approach would never
find Path B since it was originally considered to be of
slightly higher cost than Path A and discarded during
the search process.
Approaches based on generating a poorer quality

route and then attempting to improve it to meet route
constraints are not effective for most applications. An
approach is needed to keep track of different paths
based on a combined metric (turns and leg length)
as well as the total cost of the path during the search
process. This is a very difficult problem to solve in
both an accurate and efficient manner.

SZCZERBA ET AL.: ROBUST ALGORITHM FOR REAL-TIME ROUTE PLANNING 871

III. SPARSE A* SEARCH (SAS) APPROACH

For the following approach, the BC array is used
as an input to our main route-planning algorithm,
which generates the final, flyable route. As discussed
previously, a route is desired which is of minimum
total MC that has the following characteristics:
1) minimum route leg length, 2) maximum turning
angle, 3) route distance constraint, and 4) fixed
approach vector to goal position.
We propose a new approach to handle the

previously described constraints called Sparse A¤

Search (SAS). The SAS technique is a novel variation
of the standard heuristic searching algorithm A*
(pronounced “A-star”) which is used quite extensively
in route planning and graph searching applications.
Before our SAS approach is described, a brief
overview of A* in general is presented as comparison.
A* is an optimal, best-first search heuristic that

computes a cost function for various locations in an
environment [3]. A* explores the environment by
computing a cost function for each possible “next”
position to search, and then selects the lowest cost
position to add to the search space. The addition of
this new location to the search space is then used
to generate more path possibilities. All paths in the
search space are explicitly represented using pointers
from each position back to the previous position from
which it was derived. Equation (1) is the cost function
that is minimized at each step of the A* propagation

f(x) = ag(x) + bh(x): (1)

In (1), the term g(x) is the actual cost from the
start position to the intermediate position x. The
term h(x) is the estimated cost from an intermediate
position x to the goal position. a and b are parameters
used to weight the actual and estimated costs (usually,
both are set to 1). At each step in the A* propagation,
the lowest f(x) value is selected and inserted into
a sorted list of possible paths. It has been proven
that if the actual cost from x to the goal is greater
than or equal to the estimate (h(x)) of this cost, then
the solution produced by A* is guaranteed to be a
minimum cost solution [3].
The problem with the A* approach is that,

depending on the weighting (cost) factors in the
environment, the algorithm may take a very long
time (exponential in nature), and use an unbounded
amount of memory to converge to an optimal solution.
This is especially true for turn angle constraints in
a grid-based environment. For such a case, a single
grid cell could represent an almost infinite number of
nodes in the A* search space, since each cell could
theoretically be entered and exited by a proposed path
from a different angle. For cases such as these, a true
A* approach will not work due to the time constraint
imposed for real-time planning systems. To overcome
these difficulties, we introduce the SAS approach. The

SAS approach accurately and efficiently “prunes” the
search space to allow the generation of an acceptable
solution that converges in real-time. The next several
subsections outline how various route constraints can
be incorporated into the SAS approach.

A. Minimum Route Leg Length and Maximum Turn
Angle

Assume that initially we are given a start location,
goal location, an initial trajectory, minimum route leg
length, and a maximum turning angle of the desired
route. Thus, there are a finite number of cells that can
be reached from the start location with a maximum
turning angle and the minimum leg length (assuming
an initial heading). These cell positions are divided
into sectors and the minimum cost vector (to each cell
on the arc bounding a particular sector) from each
of these sectors, based on their f(x) value (see (1)),
is stored in a min-heap data structure. The number
of sectors used is proportional to the memory and
accuracy constraints for the specific application. The
greater the number of sectors, the more accurate the
resulting solution as well as the greater amount of
memory required. In order to reduce the memory
requirements as well as the amount of time necessary
to converge to a solution, only the minimum cost cell
in each sector is stored in the min-heap.
The BC array, generated in the cost minimization

step (described earlier), provides the values for h(x).
The BC array is a novel choice for h(x) because it
represents a lower bound on the cost of the path from
an intermediate node x to the goal position. Note that
we have already shown that the BC array contains
the minimum cost walking paths to reach the goal
position from any location in the environment. Since
we need to introduce turn and distance constraints
to the computations, this can only further increase
the cost of the generated path. Thus, the BC value
must be a lower bound for our particular search. It
is also a more accurate measure of h(x) than just
using the straight line distance to the goal that is
more commonly used in various A* applications
[4, 5]. Our choice of using the BC array is a
significant one because the BC values force the
graph search to concentrate on areas with a higher
probability of containing the minimum cost route,
within the given constraints. The MC array provides
the values for g(x) by computing the sum of the MC
values along each vector.
At each iteration of the search propagation, the

minimum cost node from the min-heap is removed
and expanded. This process continues until the goal
position is reached. A tree-like data structure (Sparse
A* Search Tree (SAST)) is used to store the nodes
which were “popped” off (or removed from) the
min-heap. The final route can be generated by tracing
back up the SAST once the goal has been reached.

872 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000

Fig. 4. Minimum cost vector from each of 3 sectors.

Further details of this technique can be found in
subsection IIID.
Fig. 4 shows an example of the initial fan-tail

from the start position (the arrow entering the start
corresponds to the desired initial trajectory of the
aircraft). The fan-tail is divided into 3 sectors and the
minimum cost vector (indicated by the arrows) from
each of these sectors is inserted into the min-heap H
for later propagation. Note that if no initial heading is
given, the initial fan-tail can be for a 360 deg circle
around the start location. For this case, the entire
360 deg around the start would be divided into sectors
and the minimum cost vector for each of these sectors
would be stored in the min-heap H.
Also note that, for some applications, the

minimum leg length and the maximum turning angle
can vary during the route (i.e., a shorter leg length
may be allowed at the end of a mission than at the
start). Our approach allows for this consideration
since each fan-tail may be of a unique size and shape
during the search process.

B. Route Distance Constraint

The route distance constraint corresponds to the
maximum allowable length of the computed route.
This could represent a finite amount of fuel for a
particular mission or a constraint on arrival time. No
paths of length greater than this distance (referred
to as d-max) should be considered as possible paths
during the search process. As discussed previously,
the SAST keeps track of which locations have been
searched (corresponding to nodes popped off the
SAS min-heap). The approach can accommodate
the distance constraint by limiting which nodes are
included in the SAS min-heap. For a given node x, we
only add x to the min-heap if D(x) + SL(x)<= d-max,
where D(x) is the actual distance of the calculated
path to reach x from the start position and SL(x)
is the straight-line distance from x to the goal. The
straight-line distance is added to the current length of
the path since the straight-line distance is an intuitive
lower bound on the path length from node x to the
goal. An example of this is shown in Fig. 5. The
introduction of d-max has other benefits as well.
Even when there are no fuel or time constraints on
the route, d-max can be used to effectively generate
straighter (and possibly more desirable) routes, since
d-max limits the amount of turning possible in the

Fig. 5. Node is expanded only if D+ SL <= d-max.

Fig. 6. Bucket-shaped high-cost region in MC array can be used
to force predetermined approach angle to goal.

resultant path. Furthermore, a lower value of d-max
also significantly speeds up the search time since
fewer nodes have to be considered during the search
process.

C. Fixed Approach Vector to Goal Position

We can solve the problem of the fixed approach
vector (goal approach angle) by adding a high cost
offset to the MC array (relative to the rest of the
environment) in a “bucket-shaped” area around the
goal position. This technique can be effectively used
to force the SAS into approaching the goal (or any
intermediate point) from a desired direction. For
example, assume that the goal location for a particular
mission must be approached from a cone about a
specified approach angle. For such a case, the shape
of the bucket is as indicated in Fig. 6. Since we want
the algorithm to terminate when the aircraft is within
one leg length (L) of the goal, the bucket must be
shaped so that the path cannot “force” its way through
the bucket to reach the goal. In Fig. 6, each L refers to
the minimum leg length. The two angles at the entry
to the bucket (corresponding to the dotted lines) force
the path to approach the goal from the desired angle.
One could vary the costs of the “bucket” according
to the specific mission scenario (relating the cost of
the bucket to the costs of different threats along the
route).

D. Algorithm Summary

This section summarizes the details of the SAS
algorithm as well as discussing modifications for
memory limitations and faster performance.

SZCZERBA ET AL.: ROBUST ALGORITHM FOR REAL-TIME ROUTE PLANNING 873

Algorithm 1: Sparse A* Search()
Input: MC and BC arrays, each of size m£ n.

Start position, Goal position.
Route constraints: max route length
(d-max), approach to goal vector,
minimum leg length (L), maximum turning
angle.

Output: List of grid cells corresponding to the
final flyable route.

1) Create a fan-tail of 2 times the maximum
turning angle from the start position (an aircraft can
turn right or left not more than the maximum turning
angle). The length of the fan-tail is of minimum leg
length.
2) Divide the fan-tail into S sectors. The larger

the value of S, the greater the probability of finding a
desirable solution (the memory required and the time
to converge also increases proportionally). For most
applications, a value of 3, 4, or 5 for S is sufficient
(note: the initial fan-tail, from the start location, may
be larger and divided into more sectors to take into
account any preferred initial trajectories).
3) Compute the cost of every vector (of length L)

to cells at a distance L from the origin of the fan-tail
in each of the S sectors. Recall that the angular
resolution of the sectors can be freely chosen in
accordance with the computational resources available.
Select the minimum cost vector (based on f(x)) from
each sector.
4) For each of the minimum cost vectors

computed in Step 3, insert these vectors into a
min-heap H if they don’t violate the d-max constraint
(i.e., D(x)+ SL(x)<= d-max, as described in
subsection IIIB).
5) Remove the minimum cost (root) element

from the min-heap H and expand the search space
to that position. Expanding the search space involves
repeating Steps 1—4 from this new position.
6) Once a node is removed from the min-heap H,

it is expanded and simultaneously stored in the SAST
structure to keep track of which nodes were expanded
and the direction from which the route entered that
particular node.
7) Repeat this procedure until the node removed

from the heap is within one leg length L from the
goal. When this occurs, a separate “end game” process
is used which is arbitrary and may be as simple as
“connecting the dots” from the last computed position
to the goal position. Additional algorithms may be
needed to guide the aircraft (reducing speed, altitude,
etc.) to the goal position.
8) If the min-heap H ever becomes empty before

the goal position (within one leg length L) is reached,
the algorithm terminates since a path to the goal
cannot be found within the given problem constraints
and parameters. If such a case occurs, the parameters
can be changed and the route planning algorithm

Fig. 7. Snapshot of SAS with fixed approach angle.

rerun. Note that rerunning the algorithm with new
parameters is only for ground-based premission
planners when there is ample time to rerun test cases
to determine the best parameter values for different
mission scenarios. For in-flight planners, the algorithm
parameters are predetermined to ensure that a solution
will be found within the required time frame.
9) Trace back the path up the SAST from the

last computed position until the starting position is
reached. This results in a minimum cost path (based
on the pruned search space, environmental resolution,
etc.) from the start to the goal. Note that a globally
optimal path is not generated.
10) Once the route is computed, if a particular

exact estimated time of arrival (or time on target)
is desired, the speed of the vehicle can simply be
adjusted along the route to arrive at a given time.

Fig. 7 shows a “snapshot” of the overall SAS
algorithm. The fan-tails keep expanding nodes until
the goal is reached (indicated by the bucket shape).
The dotted line represents the walking path (h(x)
value) used in computing the minimum cost vectors
to place into the min-heap.
To accommodate practical limitations on

memory requirements and to obtain real-time
performance it should be recalled that the nodes of
the SAS search space are stored in a min-heap data
structure. If the memory allocated to the min-heap is
unbounded, the algorithm will eventually terminate
and generate a minimum cost route to the goal (within
the given resolution of the search space and the
imposed constraints). Unfortunately, for very large
environments, the time to converge to a solution, even
with such an efficient approach, may be too long
for real-time applications. Because of this, we can
limit the size of the min-heap and force less desirable
solutions to be pruned from consideration. While this
approach allows the generation of faster solutions
and requires less memory, the main drawback is
that by pruning the heap (regardless of the method
used), there exists the possibility of potentially good
routes being removed from consideration. Thus, if the
maximum heap size is set to too small a value, then

874 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000

Fig. 8. Route planning SAS algorithm. Large d-max.

possible paths leading to desirable solutions may
be inadvertently discarded. The larger the memory
allocated for the min-heap, the better the chances
are for obtaining desirable routes. The method of
heap pruning used for this implementation is as
follows. When a new element is added to the full
min-heap (after the min-heap has already reached
its maximum allotted size), random locations at the
base of the min-heap are selected and the element
to be inserted is compared with the current elements
at those positions. If the cost of the new element is
smaller than the element to which it is compared, the
new node replaces that element and the min-heap
is reorganized to maintain the min-heap property
discussed earlier.
The SAS route planner may also be used for

planning routes with multiple segments (i.e., A to
B to C to D). Such a situation may occur through
the introduction of “hard-points” into the mission.
A hard-point is a location that the route must pass
through, such as a critical target or a rendezvous
point. Thus, the computed route may go from starting
point A to hard-point B to hard-point C to endpoint
D. The entire route from A to D may not represent
the lowest cost, but the route from A to D, that passes
through hard-points B and C will be the route that is
of lowest cost.
The SAS route planner also works very well in

environments with dynamic threat locations. In such a
situation, when a new threat appears (or an existing
threat location changes) the MC array is updated
in real-time to reflect this new information. This
can be as simple as increasing the cost value (MC
value) of certain cells where a threat is expected (and
subsequently reducing the cost value of cells where
the threat has left), or as complicated as a stochastic
function associated with each of the grid cells.

IV. IMPLEMENTATION RESULTS

The SAS algorithm was implemented and three
examples of the routes produced are shown in Figs. 8,
9, and 10. Real world elevation and feature data were
used from Northern California (around Fort Hunter
Liggett Military Base). Each of these routes consists
of a start and goal location, in an area populated
by high-lethality threats. The resultant flyable route
is indicated by the dark path. The start and goal
locations are represented by the larger filled circles
at the endpoints of the routes. The three lighter, large
circles represent areas of perceived threats. The areas
which are shaded within the threat circles are areas
where the threat has intervisibility to an aircraft flying
at the height specified for this segment of the route,
indicating a much more dangerous area. Each of
the smaller numbered circles indicates turn point
locations in the route where a pilot would have to
adjust course. In Fig. 8, the SAS algorithm planned
the route with a relatively large d-max value (2.5 times
the length of the straight-line distance between the
start and goal locations), essentially allowing the
route planner to plan a safe, low cost path without
too much concern for overall route distance. Note that
the route is far outside the threat circle in an area of
low terrain exposure. In Fig. 9, the SAS algorithm
was only allowed to plan a path with d-max equal to
1.3 times the straight-line distance between the start
and goal, severely restricting how far away from the
threat areas the route could go. Note that the paths
may cut through the threat circle, but still remain in
areas of low intervisibility (since they are not within
the shaded areas within the threat circles). In Fig. 10,
the pilot requested a route with an approach angle into
the goal of 135± (coming into the goal heading north
corresponds to an approach angle of 0±, hading east is
an approach angle of 90±, etc.), still keeping d-max at

SZCZERBA ET AL.: ROBUST ALGORITHM FOR REAL-TIME ROUTE PLANNING 875

Fig. 9. Route planning SAS algorithm–d-max at 1.3 times segment length.

Fig. 10. Route planning SAS algorithm with approach vector at 135 deg.

1.3. Note that the route planner found a route through
the cracks in the threat intervisibility to approach the
goal from 135± (within predetermined error bounds).
The computation time for each of the routes was well
under a minute with a resolution of 100 m£100 m
for each grid cell. The actual computation times and
more details about the implementation are considered
proprietary information and unfortunately are not able
to be included in this paper. More detailed information
can be obtained directly through the authors.

V. SUMMARY AND FUTURE WORK

Our SAS route planner is an accurate, efficient,
and robust algorithm that advances the state of
the art for real-time route planning applications.
The ability to introduce various route constraints

during the planning process, as well as varying these
parameters over the duration of a mission, makes the
algorithm valuable for almost all types of intelligent
guidance/navigation systems, including, but certainly
not limited to air, land, and sea military craft. The
uniqueness of our route planner is the combination
of functionality and efficiency that it affords. To
achieve this desired combination, we introduce
novel techniques to prune the search space, while
constraining the resultant path to meet the mission
parameters.
Since the algorithm is based on the input of an

integer cost map, we can apply the problem to a
number of other domains by simply varying what
is used to compute the cost values in the map. The
current version of the SAS route planner constrains
the route distance, leg length, approach angle, and

876 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000

turn angle in a 2-D environment, but other search
criteria (such as maximum climb angle, radar
cross-section, threat netting, etc.) can also be included.
Furthermore, the SAS route planner can be extended
to route planning in higher dimensional environments
as well as to environments with multiple, dynamic
goal locations. Researchers at Lockheed Martin
Federal Systems are currently addressing these
additional features.

ACKNOWLEDGMENTS

The following people have contributed in various
ways to the development and testing of the SAS route
planner (in alphabetical order): Kathy Ballester, Chris
Bodenhorn, Dave Card, Garf Cooper, Heidi Ng, Steve
Rostedt, Diana Shalkey-Federowicz, and Peter Stiles.

REFERENCES

[1] Bodenhorn, C., Galkowski, P., Stiles, P., Szczerba, R., and
Glickstein, I. (1997)
Personalizing onboard route re-planning for recon, attack,
and special operations missions.
Presented at the 1997 American Helicopter Society
Conference (Avionics and Crew Systems Technical
Specialists Conference), Sept. 1997.

[2] Cormen, T., Leiserson, C., and Rivest, R. (1990)
Introduction to Algorithms.
New York: McGraw Hill, 1990.

[3] Hart, P., Nilsson, N., and Raphael, B. (1968)
A formal basis for the heuristic determination of
minimum cost paths.
IEEE Transactions of Systems Science and Cybernetics, 4,
2 (July 1968), 100—107.

Robert J. Szczerba received his B.S. and M.S. degrees in electrical engineering
and a Ph.D. in computer science and engineering from the University of
Notre Dame, Notre Dame, IN, in 1990, 1993, and 1996, respectively. He did
post-doctoral research with Notre Dame and NASA’s Jet Propulsion Laboratory,
focusing on developing massively parallel algorithms for planetary rovers.
He is currently a Research Scientist at Lockheed Martin Federal Systems

in Owego, NY in the Advanced Technology Department. His main research
interests include artificial intelligence, autonomous systems, parallel computing,
and intelligent decision support systems.

[4] Hwang, Y., and Ahuja, N. (1992)
Gross motion planning–A survey.
ACM Computing Surveys, 24, 3 (Sept. 1992), 219—291.

[5] Latombe, J. (1991)
Robot Motion Planning.
Boston, MA: Kluwer, 1991.

[6] Mitchell, F. (1996)
Use of preprocessing cruise missile data for strategic
planning.
NTIS: AD-A318 875/2, Nov. 1996.

[7] Rodriques, L. (1999)
Defense acquisitions–Achieving B-2A bomber
operational requirements.
GAO/NSIAD-99-97 Report, July 1999.

[8] Rodrigues, L. (1997)
Real-time replanning for stealthy missions.
International Defense Digest, 30 (1997).

[9] Stiles, P., and Glickstein, I. (1994)
Highly parallelizable route planner based on cellular
automata algorithms.
IBM Journal of Research and Development, 38, 2 (Mar.
1994), 167—181.

[10] Szczerba, R. (1996)
New cell decomposition techniques for planning optimal
paths.
Doctoral dissertation, University of Notre Dame, Notre
Dame, IN, 1996.

[11] Szczerba, R., Chen, D., Uhran, I., Jr. (1997)
A framed-quadtree approach for determining Euclidean
shortest paths in a 2-D environment.
IEEE Transactions on Robotics and Automation, 13, 5
(Oct. 1997), 668—681.

[12] Szczerba, R., Galkowski, P., and Glickstein, I. (1998)
A mission adaptable route planner for intelligence
guidance/navigation systems.
Presented at the AIAA Conference (Aerospace Sciences
Meeting and Exhibit), Jan. 1998.

SZCZERBA ET AL.: ROBUST ALGORITHM FOR REAL-TIME ROUTE PLANNING 877

Peggy J. Galkowski is a Senior Engineer at Lockheed Martin Federal Systems in Owego, NY. She received her
B.S. and M.S. degrees in electrical engineering from M.I.T. in 1975.
In 1975, she joined Lockheed Martin Federal Systems (formerly IBM). During her career, Ms. Galkowski

has developed algorithms for route planning systems, guidance and navigation systems and mission
management systems.

Ira S. Glickstein received his Bachelors degree in electrical engineering from
City College of New York and his Masters and Ph.D. in systems science from
the Watson School of Engineering, Binghamton University in 1961, 1989, and
1996, respectively. He is a Senior Systems Engineer at Lockheed Martin Federal
Systems (formerly IBM) in Owego, NY, and an Adjunct Instructor in Computer
Science and Systems Engineering at Binghamton University and in Software
Engineering at the University of Maryland University College. His main research
interests include artificial intelligence, advanced visionics, avionics architecture
and hierarchy theory.

Noah J. Ternullo received his B.S. in electrical engineering from Binghamton
University in 1997, where he is also currently completing his M.S. in computer
science.
Mr. Ternullo is a Senior Associate Systems Engineer at Lockheed Martin

Federal Systems in Owego in the Avionics Department. His current primary
research interests are in the area of mobile computing.

878 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 3 JULY 2000

