
1

Dynamic Priority Scheduling
• Static-priority:

– Rate Monotonic (RM): “The shorter the period, the higher the
priority.” [Liu+Layland ‘73]

– Deadline Monotonic (DM): “The shorter the relative deadline, the
higher the priority.” [Leung+Whitehead ‘82]

• For arbitrary relative deadlines, DM outperforms RM

• Dynamic-priority:
– EDF: Earliest Deadline First
– LST: Least Slack Time First
– FIFO/LIFO
– others

Priority-Driven Scheduling
• FIFO/LIFO do not take into account urgency of jobs
• Static-priority assignments based on functional criticality

are typically non-optimal
• We confine our attention to algorithms that assign

priorities based on temporal parameters

• Definition [Schedulable Utilization]: Every set of
periodic tasks with total utilization less or equal than the
schedulable utilization of an algorithm can be feasibly
scheduled by that algorithm

• The higher the schedulable utilization, the better the
algorithm

• Schedulable utilization is always less or equal to 1.0!

Schedulable Utilization of FIFO
• Theorem: UFIFO = 0
• Proof: Given any utilization level ε>0, we can find a task

set, with utilization ε, which may not be feasibly
scheduled according to FIFO

• Example task set:
T1: e1 = ε/2 * p1

T2: p2 = 2/ε * p1 ⇒ U = ε
e2 = p1

e1

e2

p2

2

Earliest Deadline First (EDF)
• Online
• Preemptive
• Dynamic priorities
• “Always run the process that is closest to its deadline”
• Requirements:

– events that lead to release of Pi appear with minimum interarrival
interval Ti

– Pi has a max computation time ei

– the process must be finished before its deadline Di ≤ Ti

– processes are independent (do not share resources)
– the process with shortest absolute deadline (di) will run first

EDF
• Earliest deadline first with two tasks
• C1=2 , T1=D1=5
• C2=4 , T2=D2=7
• Earliest Deadline First

– Optimal
– Sufficient condition U≤1
– Dynamic priority assignment
– Runs the task with the closest deadline

1

2

J1

J2
0 2 4 6 8 10 12 14 16 18 20 22

1

2

1

2 2

1

RMS versus EDF

1

2

J1

J2
0 2 4 6 8 10 12 14 16 18 20 22

1

2

1

2 2

1 1

2 2

1

2

J1

J2
0 2 4 6 8 10 12 14 16 18 20 22

1

2

1

2 2

1

3

EDF versus RMS
Process P1 P2
WCET 5 10
Deadline (Di=Ti) 20 12
Arrival times (ri) 0,20,… 0,12,…

Theorem
• A set of periodic tasks P1,…,Pn for which Di=Ti is

schedulable with EDF iff U ≤ 1

• EDF versus RMS
– EDF gives higher processor utilization
– EDF has simpler exact analysis
– RMS can be implemented to run faster at run-time (ignoring time

for context switching)

Sufficient Acceptance Test for EDF
• If the deadline ≥ period, then test is both necessary and

sufficient
• If the deadline < period, then the test is only a sufficient

condition

!
=

"=#=
n

k kk

k

pD

e
Density

1

1
),min(

4

Unpredictability of EDF
• Domino effect during overload conditions
• Example: T1(4,3), T2(5,3), T3(6,3), T4(7,3)

0 3 5 6 7

T1 T2 T3 T4

Deadline Miss!

Better schedules:

0 3 5 6 7

T1 T3

0 3 5 6 7

T1 T4

Least Slack Time First (LST)
• Slack of a job at time t: d-t-x
• Scheduler gives jobs with smaller slack higher priority
• Difference to EDF?

Scheduling Aperiodic and Sporadic Jobs
• Given: n periodic tasks T1, … , Ti = (pi, ei), … , Tn

priority-driven scheduling algorithm
• We want to determine when to execute aperiodic and

sporadic jobs, i.e.,
– sporadic job: acceptance test

scheduling of accepted job
– aperiodic job: schedule job to complete ASAP.

5

Priority Queues

Processor

Acceptance
Test

Sporadic
Jobs

Periodic
Jobs

Aperiodic
Jobs

reject

Executing Aperiodic Jobs
• Background:

– Aperiodic job queue has always lowest priority among all queues.
– Periodic tasks and accepted jobs always meet deadlines.
– Simple to implement.
– Execution of aperiodic jobs may be unduly delayed.

• Interrupt-Driven:
– Response time as short as possible.
– Periodic tasks may miss some deadlines.

• Slack Stealing:
– Postpone execution of periodic tasks only when it is safe to do

so:
• Well-suited for clock-driven environments.
• What about priority-driven environments? (quite complicated)

Executing Aperiodic Jobs

A : r = 0.1 , e = 2.1
Background:

Interrupt-Driven:

Slack Stealing:

T
T
1

2

3 1
10 4

=

=
(,)
(,)

6

Polled Execution, Bandwidth Preserving Servers
• Polling server (ps, es): scheduled as periodic task.

ps : Poller ready for execution every ps time units.
es : Upper bound on execution time.

• Terminology:
– (Execution) budget: es
– Replenishment: set budget to es at beginning of period.
– Poller consumes budget at rate 1 while executing aperiodic jobs.
– Poller exhausts budget whenever poller finds aperiodic queue

empty.
– Whenever the budget is exhausted, the scheduler removes the

poller from periodic queue until replenished.

• Bandwidth-preserving server algorithms:
– Improve upon polling approach
– Use periodic servers
– Are defined by consumption and replenishment rules.

Example: Polling Server

Rate-Monotonic:

PS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ=0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

Deferrable Servers
• Rules:

– Consumption: Execution budget consumed only when server
executes.

– Replenishment: Execution budget of server is set to es at
each multiple of ps.

• Preserves budget when no aperiodic job is ready.

• Any budget held prior to replenishment is lost (no
accumulation).

7

Deferrable Server with RMS

Rate-Monotonic:

DS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ=0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

Deferrable Server with EDF

EDF:

T1=(φ=2,3.5,1.5)

T2=(φ=0,6.5,0.5)

A : r = 2.8, e = 1.7

budget

Deferrable Server with Background Server

DS=(3,1)

T1=(φ=2,3.5,1.5)

T2=(φ=0,6.5,0.5)

A : r = 2.8, e = 1.7

budget

serve in background!

8

Why Not Increase The Budget?

T1=(3.5,1.5)

T2=(6.5,0.5)

Total Bandwidth Server
• Consumption rule:

– A server consumes its budget only when it executes.

• Replenishment rules:
R1 Initially, set es := 0 and d :=0.
R2 When an aperiodic job with execution time e arrives at time t to

an empty aperiodic job queue, set d := max(d,t) + es/us, and es :=
e.

R3 Upon completion of the current aperiodic job, remove job from
queue.
(a) if the server is backlogged, set d := d + e/us and es := e;
(b) if the server is idle, do nothing.

TBS: Eliminated Unused Capacity

Budget

2.0

1.0

T1

T2

A1(r=3, e=1) A2(r=6.9, e=2) A3(r=14, e=2)

TS

T3

T1 = (3, 0.5) T2 = (4, 1.0) T3 = (19, 4.5)

d=15

