Dynamic Priority Scheduling

« Static-priority:

— Rate Monotonic (RM): “The shorter the period, the higher the
priority.” [Liu+Layland ‘73]

— Deadline Monotonic (DM): “The shorter the relative deadline, the
higher the priority.” [Leung+Whitehead ‘82]

» For arbitrary relative deadlines, DM outperforms RM

Dynamic-priority:

— EDF: Earliest Deadline First
— LST: Least Slack Time First
— FIFO/LIFO

— others

Priority-Driven Scheduling

FIFO/LIFO do not take into account urgency of jobs
Static-priority assignments based on functional criticality
are typically non-optimal

We confine our attention to algorithms that assign
priorities based on temporal parameters

Definition [Schedulable Utilization]: Every set of
periodic tasks with total utilization less or equal than the
schedulable utilization of an algorithm can be feasibly
scheduled by that algorithm

The higher the schedulable utilization, the better the
algorithm

Schedulable utilization is always less or equal to 1.0!

Schedulable Utilization of FIFO

Theorem: Ugro =0

Proof: Given any utilization level ¢>0, we can find a task
set, with utilization ¢, which may not be feasibly
scheduled according to FIFO

Example task set:

T e, =¢e2*p,
T, p,=2/e*p, (=U=¢
=P

el

P

€

Earliest Deadline First (EDF)

* Online

* Preemptive

« Dynamic priorities

« “Always run the process that is closest to its deadline”
* Requirements:

— events that lead to release of P, appear with minimum interarrival
interval T;

— P, has a max computation time e;

— the process must be finished before its deadline D, < T;

— processes are independent (do not share resources)

— the process with shortest absolute deadline (d;) will run first

EDF

« Earliest deadline first with two tasks
+ C=2,T,=D;=5
+ C,=4,T,=D,=7
+ Earliest Deadline First
— Optimal
— Sufficient condition U<1
— Dynamic priority assignment
— Runs the task with the closest deadline

RMS versus EDF

EDF versus RMS

Process | I P2
WCET 5 10
Deadline (Di=Ti) 20 12
Arrival times (ri) 0,20,... 0,12,...
1] L 1]
L I

|

||
Theorem

+ A set of periodic tasks Py,...,P, for which D;=T; is
schedulable with EDF iff U < 1

» EDF versus RMS
— EDF gives higher processor utilization
— EDF has simpler exact analysis

— RMS can be implemented to run faster at run-time (ignoring time
for context switching)

Sufficient Acceptance Test for EDF

« If the deadline = period, then test is both necessary and
sufficient

« If the deadline < period, then the test is only a sufficient
condition

Density = A = Z'e—"‘sl
= min(D,, p,)

Unpredictability of EDF

» Domino effect during overload conditions
» Example: T,(4,3), Ty(5,3), T5(6,3), T4(7,3)

Deadline Miss!

Better schedules:

Least Slack Time First (LST)

» Slack of a job at time t: d-t-x
» Scheduler gives jobs with smaller slack higher priority
« Difference to EDF?

Scheduling Aperiodic and Sporadic Jobs

« Given: n periodic tasks T, ..., T;=(p, €), ..., T,
priority-driven scheduling algorithm
« We want to determine when to execute aperiodic and
sporadic jobs, i.e.,
— sporadic job: acceptance test
scheduling of accepted job
— aperiodic job: schedule job to complete ASAP.

Priority Queues

reject

Sporadic
Jobs Test
Periodic ST Processor
Aperiodic
Jobs
Executing Aperiodic Jobs

» Background:
— Aperiodic job queue has always lowest priority among all queues.
— Periodic tasks and accepted jobs always meet deadlines.
— Simple to implement.
— Execution of aperiodic jobs may be unduly delayed.
* Interrupt-Driven:
— Response time as short as possible.
— Periodic tasks may miss some deadlines.

» Slack Stealing:

— Postpone execution of periodic tasks only when it is safe to do
SO:

*+ Well-suited for clock-driven environments.
» What about priority-driven environments? (quite complicated)

Executing Aperiodic Jobs

w

To= (31
Background: o= (10, 4
‘ s B s B

Interrupt-Driven:

.

«—
=

i
g
d
i

-—
= =
=

Polled Execution, Bandwidth Preserving Servers

+ Polling server (p, e): scheduled as periodic task.
Ps: Poller ready for execution every p, time units.
e Upper bound on execution time.
« Terminology:
— (Execution) budget: e¢
— Replenishment: set budget to e at beginning of period.
— Poller consumes budget at rate 1 while executing aperiodic jobs.
— Poller exhausts budget whenever poller finds aperiodic queue
empty.
— Whenever the budget is exhausted, the scheduler removes the
poller from periodic queue until replenished.

» Bandwidth-preserving server algorithms:
— Improve upon polling approach
— Use periodic servers
— Are defined by consumption and replenishment rules.

Example: Polling Server

Rate-Monotonic:

/7,4::‘:2.8,@:1.7
T) v T v DU B

PS=(3.1)

T,=(¢=2,35,1.5)

N s NN i U s S s IV S N

Ty=(¢=0, 6.5, 0.5)

ﬁ L, [

L INC DN n

Deferrable Servers

* Rules:

— Consumption: Execution budget consumed only when server
executes.

— Replenishment: Execution budget of server is set to e, at
each multiple of p,.

* Preserves budget when no aperiodic job is ready.

» Any budget held prior to replenishment is lost (no
accumulation).

Deferrable Server with RMS

Rate-Monotonic:

T A:r=28e=17
Df:(j. 1)

o m |

S I o A o I s N S

budget N
.

T,=(¢=2,35,1.5)

[]

M—T

Deferrable Server with EDF
EDE:
/7/1:/‘:2.81:1.7

Lo e, m
T)=(¢=23.51.5)

‘ i s P e e A S
T,=(¢=0,6.5,0.5)
| R S B

budget ‘ .

M—T

Deferrable Server with Background Server

/ A:ir=28e=17 serve in background!
DS=(3,1)

Hﬁﬁit/i

S I O o O s R e

budget f AN |
.

T/ =(¢=2.3.5,1.5)

Why Not Increase The Budget?

o Y I

1/=(3.5,1.5)

| e o I S NN S

T,=(6.5,0.5)

l !

Total Bandwidth Server

* Consumption rule:
— A server consumes its budget only when it executes.

* Replenishment rules:
R1 Initially, set e;:= 0 and d :=0.
R2 When an aperiodic job with execution time e arrives at time t to
an empty aperiodic job queue, set d := max(d,t) + e/ug, and e, :=
e.
R3 Upon completion of the current aperiodic job, remove job from
queue.
(a) if the server is backlogged, set d ;= d + e/u; and e, := ¢;
(b) if the server is idle, do nothing.

TBS: Eliminated Unused Capacity

7,=(3,05) T,=(4,10) T,=(19,4.5)

0 IO w R IO PO P U I OO O

o 1 U e I s RO s PO o A A A

1 ..nn . 1., a1,
A, (r=3,e=1) A,(r=6.9, e=2) A(r=14, e=2)

o I T =l <R [

2.0t

;‘;\ N__ N

9 ~ [

Budget

d=15

