
MOBILE COMPUTING

CSE 40814/60814 Spring 2021

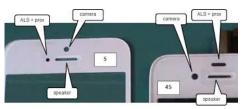
Examples of Context

- · Identity (user, others, objects)
- Location
- Date/Time
- Environment
- Emotional state
- Focus of attention
- Orientation
- User preferences
- Calendar (events)
- Browsing history
- · Behavioral patterns
- Relationships (phonebook, call history)
- ... the elements of the user's environment that the computer knows about...

Relevance of Context Information

- Trying to arrange lunch meeting
- Going to a job interview
- Going home after work and making evening plans
- Shopping
- Tourist
- ...

- Smartphone adjusts the screen to the orientation of the device
- Apple Watch turns on display if arm lifted/rotated
- Orientation is determined by using both a gyroscope and an accelerometer.



Examples

- Phone display adjusts the brightness of the display based on the surrounding area
- Uses a light sensor

- Device displays user's location, shows route to a desired destination, find nearby stores, geotag images on social media, etc.
- · Uses location sensor

Examples

- The time is displayed on the phone.
 - Time zone change
 - Daylight savings time

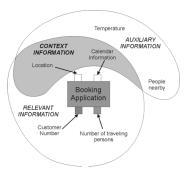
- Device disables touch screen when the user speaks on the phone
- Uses a proximity sensor (infrared signal travel time)

Examples

- Active Badge location system
 - One of the first context-aware applications
 - Context = location
 - Call-forwarding system
 - Issues
 - · Private call forwarding to a public room
 - · Call is forwarded to important meeting

- Schneider trucking trackers
 - Uses GPS to track loads
 - Sends a notification when a load nears its destination
 - Sends emergency notifications when certain conditions are met

Why Use Context?


- Reduce cognitive load of user
- Proactivity
 - Set up environment according to user's preferences/history
 - Auto-completion of forms (location, time in timetable)
 - Reminders
- Search and filter information according to user's needs
- Avoid interrupting the user in inappropriate situations
- Smart environments
 - Turn devices on/off, start applications, ... depending on location, time, situation (lecture, meeting, home cinema, ...)
 - · Discover and use nearby interaction devices

Definitions of Context

 "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves" [Dey et al. 2001]

· Auxiliary: not essential

Relevant: can actually be used

Classification I

- Time Context (current time, day of week, etc.)
- Physical Context (location, temperature, pollution levels, noise levels, etc.)
- User Context (characteristics, habits, history, etc.)
- Computational Context (user input, customer history from database, network status, etc.)

Classification II

External (physical)

- · Context that can be measured by hardware sensors
- Examples: location, light, sound, movement, touch, temperature, air pressure, etc.

· Internal (logical)

- Mostly specified by the user or captured monitoring the user's interaction
- Examples: the user's goal, tasks, work context, business processes, the user's emotional state, etc.

Challenges

Self-Awareness:

- · Context-awareness helps technology to "get it right"
- But context is hard to sense (quantity, subtleness)
- · Computers are not self-aware like humans
- When the system does the wrong thing
 - · auto-locking car doors
 - · screen saver during presentation
 - · microphone amplifying a whisper

Challenges

Intelligence

- Context data must be coupled with the ability to interpret it, but computers are bad at "common sense".
- More rules ≠ intelligence
- More rules = more complexity, harder to understand
- Keep "Human in the Loop"?
 - · computers can detect, aggregate, portray information
 - · allow human users to interpret and act on it
 - is this a good strategy for all context-aware systems?

Challenges

Programming:

- Developers have little experience with devices that gather the data (e.g., gyroscopes).
- Data gathered from a sensor must be interpreted correctly in order for it to be useful.
- Context comes from various sources and in order for this data to be useful it must be combined correctly (i.e., the gyroscope and accelerometer working together to determine orientation).
- · The context changes constantly in real time.

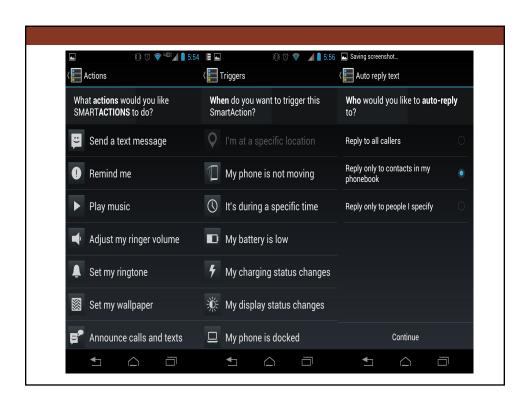
Challenges

- Usability vs. control?
 - Automation reduces the amount of work that users have to do
 - Users like the idea of a device that completes tasks on their behalf
 - However, when users use these devices they feel a loss of control if a device has a high level of automation

Challenges

- Privacy
 - Should law enforcement be able to access the history of a user?
- Correctness
 - Errors fusing data
 - · Detection errors
 - Interpretation errors
- Complexity
 - · Difficult to develop, maintain, understand
 - Reduces accuracy of the application

Challenges


- User preferences
 - · May not match what the device does!
 - · Everyone is different!
 - What is your idea of "nighttime"?
 - · What is your idea of "warm"? Or "loud"?
- Information overload
 - Can overwhelm the user

Solutions

- Keep an appropriate level of automation (avoid uncertainty)
 - The more automation we have, the less control we have over what is happening.
 - What happens if we give all control to machines?
 - Would you trust your phone to give you a dose of medicine?
 - Keep a balance between uncertainty and automation.

Solutions

- Avoid unnecessary interruptions
 - Phone flashes a notification every 30 seconds
 - · Eventually the user will ignore it!
- Avoid information overload
 - Too much information can overwhelm the user, and bog down the device
 - Example: Walking down a busy street a user's device is bombarded with suggestions of places to shop

Solutions

- Keep an appropriate level of system status visibility
 - Allow the user to see what action the device is taking
 - Be sure the user understands *why* the device is performing the action
- Account for the impact of Social Context
 - A loud alert is not ideal for all situations
- Allow for the personalization of individual needs
 - Allow user to change location names (set a location name to "home" for example)

Solutions

- Secure the user's privacy
 - Selling information to advertisers...is this right?
 - Giving information to the police, when does this cross the line?
 - Sharing context information with others— Facebook location