
1/30/21

1

MOBILE COMPUTING
CSE 40814/60814
Spring 2021

How many of you…
have implemented a command-line user interface?

1/30/21

2

How many of you…
have implemented a graphical user interface?

• HTML/CSS
• Java Swing
• .NET Framework
• Mozilla’s XUL
• Mobile platform (iOS, Android, Blackberry, …)
• Something else?

What’s the difference?
Command-line model (e.g., UNIX shell, DOS)

• Interaction controlled by system
• User queried when input is needed

Event-driven model (e.g., GUIs)
• Interaction controlled by the user
• System waits for user actions and then reacts
• More complicated programming and architecture
• Need to build the “look” and “feel” of interface

1/30/21

3

Component/Container Model
Component (aka widget, control, etc.)

• Encapsulation of an interactive element
• Drawn using the 2D graphics library
• Low-level input event processing
• Repaint management

• In OOP systems, each component is
implemented as a sub-class of a base
“Component” class

Examples of Components
• Button
• Checkbox
• Radio button
• Text box
• Combo box (drop-down list)
• List box
• Scrollbar
• Slider
• Menu
• Menu item
• NumericPicker
• DateTimePicker
• …

1/30/21

4

Java Swing Components

.NET Framework Controls

1/30/21

5

HTML Form Controls

Component/Container Model
Container

• Component that contains one or more other
components

• Creates the structure of the user interface
• Manages child components

• Layout, painting, event dispatch
• Some have interactive features (e.g., tab panel)

1/30/21

6

Container Structure
Label Textbox

Buttons

Container Structure
Label Textbox

ButtonsPanels

1/30/21

7

Container Structure
Window

Panel

TextboxLabel Panel

ButtonButton

Layout

Window

Panel

TextboxLabel Panel

ButtonButton

Containers specify layout of their children

1/30/21

8

Layout

Window

Panel

TextboxLabel Panel

ButtonButton

Containers specify layout of their children

spring strut

“Feel”: Events
User input is modeled as “events” that must be handled by
the system

Examples?
• Mouse

button down, button up, button clicked, entered, exited, moved, dragged

• Keyboard
key down, key up, key pressed

• Window
movement, resizing

• Touchscreen
Touching, swiping, dragging, pinching

1/30/21

9

Anatomy of an Event
An event encapsulates the information needed for handlers
to react to the input

• Event type (mouse button down, key up, etc.)
• Event target (component in which event occurred)
• Timestamp
• Modifiers (Ctrl, Shift, Alt, etc.)
• Type-specific content

• Mouse: x,y coordinates, # clicks
• Keyboard: key code

Event Handlers
Events are dispatched to components

• Application developers can specify code to be executed when the
event occurs (callbacks)

• Built-in components will have code to handle most keyboard and
mouse events
• Buttons handle mouse up/down to change graphic
• Text boxes update their contents on key press

• Built-in components often generate new “high-level” events from
combinations of low-level events
• Text boxes generate “change” events when content changes and focus

is lost
• Sliders generate “change” events when thumb is dragged

1/30/21

10

Event Loop
Event Queue

mouse up (10,20)

key down (‘h’)

key up (‘h’)

key down (‘i’)

while(!done) {
evt = dequeue_event();
dispatch_event(evt);
repaint_screen();

}

Input Devices Event Loop

Exists in every application
Usually handled for you by UI framework

Event Loop
Event Queue

mouse up (10,20)

key down (‘h’)

key up (‘h’)

key down (‘i’)

while(!done) {
evt = dequeue_event();
dispatch_event(evt);
repaint_screen();

}

Input Devices Event Loop

Blocks until an event arrives

1/30/21

11

Event Loop
Event Queue

mouse up (10,20)

key down (‘h’)

key up (‘h’)

key down (‘i’)

while(!done) {
evt = dequeue_event();
dispatch_event(evt);
repaint_screen();

}

Input Devices Event Loop

Most of the work happens here

Dispatching Events

Window

Panel

TextboxLabel Panel

ButtonButton

mouse down (10,50)

function onMouseDown(evt) {
// do something...

}

1/30/21

12

Dispatching Events

Window

Panel

TextboxLabel Panel

ButtonButton

mouse down (10,50)

function onMouseDown(evt) {
// do something...

}

Dispatching Events

Window

Panel

TextboxLabel Panel

ButtonButton

mouse down (10,50)

function onMouseDown(evt) {
// do something...

}

1/30/21

13

Dispatching Events

Window

Panel

TextboxLabel Panel

ButtonButton

mouse down (10,50)

function onMouseDown(evt) {
// do something...

}

Dispatching Events

Window

Panel

TextboxLabel Panel

ButtonButton

mouse down (10,50)

function onMouseDown(evt) {
// do something...

}

1/30/21

14

MODEL VIEW CONTROLLER (MVC)
• Architecture for interactive apps
• Partitions application in a way that is

• Scalable
• Maintainable

model

view

controller

MVC

• Architectural design pattern which works to separate data
and UI for a more cohesive and modularized system

• Presented by Trygve Reenskaug in 1979

• First used in the Smalltalk-80 framework

• Used in making Apple interfaces (Lisa and Macintosh)

1/30/21

15

MVC
•Model: data model

• manages behavior and data of the application domain

• View: screen(s) shown to the user
• manages the graphical and/or textual output to the portion of the

bitmapped display that is allocated to its application

•Controller: interactions from the user that
changes the data and the view
• interprets the mouse and keyboard inputs from the user,

commanding the model and/or the view to change as appropriate

29

Example Application

1/30/21

16

Model
Information the app is trying to manipulate
Representation of real world objects

• Circuit for a CAD program
• Shapes in a drawing program
• List of people in a contact management
program

model

view

controller

View
Implements a visual display of the model
May have multiple views

• E.g., shape view and numeric view

model

view

controller

1/30/21

17

Multiple Views

View
Implements a visual display of the model
May have multiple views

• E.g., shape view and numeric view
Anytime the model is changed, each view
must be notified so that it can update later

model

view

controller

1/30/21

18

Controller
• Receives all input events from the user
• Decides what they mean and what to do

• Communicates with view to determine the
objects being manipulated (e.g., selection)

• Calls model methods to make changes to
objects

model

view

controller

Controller

1/30/21

19

Controller

Controller
Click!

1/30/21

20

Controller

Combining View & Controller
• View and controller are tightly intertwined

• Lots of communication between the two
• E.g. determine what was clicked on

• Almost always occur in pairs
• i.e., for each view, need a separate controller

• Many architectures combine that into a single unit

model
view

controller

1/30/21

21

Model

Controller Controller ControllerController

One Model, Many Controllers

model publishes changes

controllers listen for changes

41

Model

Controller

MVC Feedback Loop

controller receives changes

controller receives
input from mouse,
keyboard, etc

model publishes changes

controller sends
commands to model

model responds to
commands, maybe
changing its state

1/30/21

22

Xcode (iOS) ViewController

Android View Class
• The View class is the Android’s most basic component from

which users interfaces can be created. This element is
similar to the Swing JComponent class for Java apps.
• A View occupies a rectangular area on the screen and is

responsible for drawing and event handling.
• Widgets are subclasses of View. They are used to create

interactive UI components such as buttons, checkboxes,
labels, text fields, etc.

• Layouts are invisible containers used for holding other
Views and nested layouts.

1/30/21

23

Graphical UI – XML Layout
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<EditText
android:id="@+id/editText1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:hint="Enter you name here"
android:layout_marginTop="50dp"
android:ems="10" >

<requestFocus />
</EditText>

<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/editText1"
android:layout_centerHorizontal="true"
android:layout_marginTop="24dp"
android:text=" Go " />

</RelativeLayout>

Actual UI displayed by the app Text version: activity_main.xml file

Examples of UI Components

Linear Layout
A LinearLayout places
its inner views either
in horizontal or
vertical disposition.

Relative Layout
A RelativeLayout is a
ViewGroup that allows you to
position elements relative to
each other.

Table Layout
A TableLayout is a
ViewGroup that places
elements using a row &
column disposition.

Layouts

1/30/21

24

Examples of UI Components

TimePicker
AnalogClock
DatePicker
A DatePicker is a
widget that allows the
user to select a
month, day and year.

Form Controls
Includes a variety of
typical form widgets,
like:
image buttons,
text fields,
checkboxes and
radio buttons.

GalleryView

TabWidget

Spinner

Widgets

Why MVC?
• Mixing all pieces in one place will not scale

• Model may have more than one view
• Each is different and needs update when model

changes
• Separation eases maintenance and
extensibility
• Easy to add a new view later
• Model can be extended, but old views still work
• Views can be changed later (e.g., add 3D)

