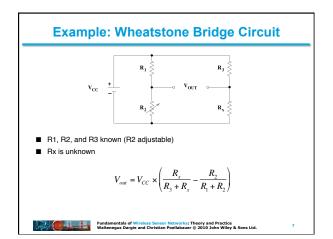


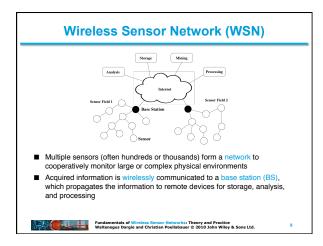
Sensing and Sensors

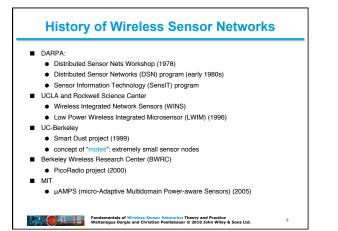
- Sensing: technique to gather information about physical objects or areas
- Sensor (transducer): object performing a sensing task; converting one form of energy in the physical world into electrical energy
- Examples of sensors from biology: the human body
 - eyes: capture optical information (light)
 - ears: capture acoustic information (sound)
 - nose: captures olfactory information (smell)
 - skin: captures tactile information (shape, texture)

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 3



Physical property to be monitored determines type of required sensor		
sperty to be monitored determines type of required sensor		
Examples		
Thermistors, thermocouples		
Pressure gauges, barometers, ionization gauges		
Photodiodes, phototransistors, infrared sensors, CCD sensors		
Piezoelectric resonators, microphones		
Strain gauges, tactile sensors, capacitive diaphragms, piezoresistive cells		
Accelerometers, mass air flow sensors		
GPS, ultrasound-based sensors, infrared-based sensors, inclinometers		
Hall-effect sensors, magnetometers		
pH sensors, electrochemical sensors, infrared gas sensors		
Capacitive and resistive sensors, hygrometers, MEMS-based humidity sensors		


Other Classifications

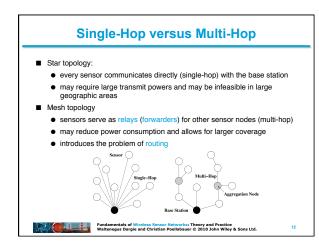

Power supply:

- active sensors require external power, i.e., they emit energy (microwaves, light, sound) to trigger response or detect change in energy of transmitted signal (e.g., electromagnetic proximity sensor)
- passive sensors detect energy in the environment and derive their power from this energy input (e.g., passive infrared sensor)
- Electrical phenomenon:
 - resistive sensors use changes in electrical resistivity (ρ) based on physical properties such as temperature (resistance R = ρ*I/A)
 - capacitive sensors use changes in capacitor dimensions or permittivity (ϵ) based on physical properties (capacitance C = ϵ^*A/d)
 - inductive sensors rely on the principle of inductance (electromagnetic force is induced by fluctuating current)
 - piezoelectric sensors rely on materials (crystals, ceramics) that generate a displacement of charges in response to mechanical deformation

History of Wireless Sensor Networks

- Recent commercial efforts
 - Crossbow (<u>www.xbow.com</u>)
 - Sensoria (<u>www.sensoria.com</u>)
 - Worldsens (worldsens.citi.insa-lyon.fr)
 - Dust Networks (<u>www.dustnetworks.com</u>)
 - Ember Corporation (<u>www.ember.com</u>)

WSN Communication


10

11

- Characteristics of typical WSN:
 - low data rates (comparable to dial-up modems)

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

- energy-constrained sensors
- IEEE 802.11 family of standards
 - most widely used WLAN protocols for wireless communications in general
 - can be found in early sensor networks or sensors networks without stringent energy constraints
- IEEE 802.15.4 is an example for a protocol that has been designed specifically for short-range communications in WSNs
 - low data rates
 - low power consumption
 - widely used in academic and commercial WSN solutions

- Sensors typically powered through batteries
 - replace battery when depleted
 - recharge battery, e.g., using solar power
 - discard sensor node when battery depleted
- For batteries that cannot be recharged, sensor node should be able to operate during its entire mission time or until battery can be replaced
- Energy efficiency is affected by various aspects of sensor node/network design
- Physical layer:
 - switching and leakage energy of CMOS-based processors

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer (© 2010 John Wiley & Sons Ltd.

 $E_{CPU} = E_{switch} + E_{leakage} = C_{total} * V_{dd}^{2} + V_{dd} * I_{leak} * \Delta t$

13

14

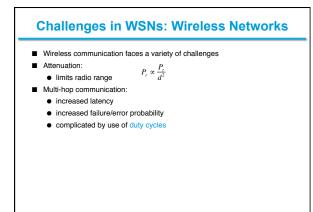
15

Challenges in WSNs: Energy

- Medium access control layer:
 - contention-based strategies lead to energy-costly collisions
 - problem of idle listening
- Network layer:
 - responsible for finding energy-efficient routes
- Operating system:
 - small memory footprint and efficient task switching
- Security:
 - fast and simple algorithms for encryption, authentication, etc.
- Middleware:
 - in-network processing of sensor data can eliminate redundant data or aggregate sensor readings

Fundamentals of <u>Wireless Sensor Networks</u>: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Challenges in WSNs: Self-Management


Ad-hoc deployment

- many sensor networks are deployed "without design"
 - sensors dropped from airplanes (battlefield assessment)
 sensors placed wherever currently needed (tracking patients in disaster zone)
 - moving sensors (robot teams exploring unknown terrain)
- sensor node must have some or all of the following abilities
 - determine its location
 - determine identity of neighboring nodes
 - configure node parameters
 - discover route(s) to base station
 - initiate sensing responsibility

Challenges in WSNs: Self-Management

- Unattended operation
 - once deployed, WSN must operate without human intervention
 - device adapts to changes in topology, density, and traffic load
 - device adapts in response to failures
- Other terminology
 - self-organization is the ability to adapt configuration parameters based on system and environmental state
 - self-optimization is the ability to monitor and optimize the use of the limited system resources
 - self-protection is the ability recognize and protect from intrusions and attacks
 - self-healing is the ability to discover, identify, and react to network disruptions

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Challenges in WSNs: Decentralization

17

- Centralized management (e.g., at the base station) of the network often not feasible to due large scale of network and energy constraints
- Therefore, decentralized (or distributed) solutions often preferred, though they may perform worse than their centralized counterparts
- Example: routing
- Centralized:
 - BS collects information from all sensor nodes
 - BS establishes "optimal" routes (e.g., in terms of energy)
 - BS informs all sensor nodes of routes
 - can be expensive, especially when the topology changes frequently
- Decentralized:
 - each sensors makes routing decisions based on limited local information
 routes may be nonoptimal, but route establishment/management can be much cheaper
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Challenges in WSNs: Design Constraints

Many hardware and software limitations affect the overall system design

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

- Examples include:
 - Low processing speeds (to save energy)
 - Low storage capacities (to allow for small form factor and to save energy)
 - Lack of I/O components such as GPS receivers (reduce cost, size, energy)
 - Lack of software features such as multi-threading (reduce software complexity)

19

20

Challenges in WSNs: Security

 Sensor networks often monitor critical infrastructure or carry sensitive information, making them desirable targets for attacks

- Attacks may be facilitated by:
 - remote and unattended operation
 - wireless communication
 - lack of advanced security features due to cost, form factor, or energy
- Conventional security techniques often not feasible due to their computational, communication, and storage requirements
- As a consequence, sensor networks require new solutions for intrusion detection, encryption, key establishment and distribution, node authentication, and secrecy

Traditional Networks	Wireless Sensor Networks
General-purpose design; serving many	Single-purpose design; serving one
applications	specific application
Typical primary design concerns are	Energy is the main constraint in the
network performance and latencies;	design of all node and network
energy is not a primary concern	components
Networks are designed and engineered according to plans	Deployment, network structure, and resource use are often ad-hoc (without planning)
Devices and networks operate in	Sensor networks often operate in
controlled and mild environments	environments with harsh conditions
Maintenance and repair are common and	Physical access to sensor nodes is often
networks are typically easy to access	difficult or even impossible
Component failure is addressed through	Component failure is expected and
maintenance and repair	addressed in the design of the network
Obtaining global network knowledge is typically feasible and centralized management is possible	Most decisions are made localized without the support of a central manager

