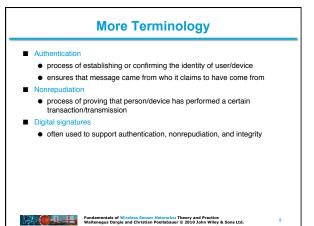

- Security fundamentals
- Security challenges
- Security attacks
- Security protocols and mechanisms
- IEEE 802.15.4 and ZigBee security


Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 2

3

Fundamentals

- Security and privacy are big challenges for any type of computing and networking environment
- Well-known CIA security model:
 - Confidentiality
 - ensure that only the intended receiver can read/interpret a message
 unauthorized access is prevented
 - Integrity
 - ensure that a message cannot be modified
 - + unauthorized individuals should not be able to destroy/alter message
 - <u>A</u>vailability
 - ensure that system/network is able to perform its tasks without interruption
 - often measured in terms of percentages of up/down time

Cryptography

- Process of protecting information using encoding/decoding techniques
- Symmetric key cryptography
 - single key shared between communicating parties
 - simple example: shift cipher (key = fixed shift in alphabet)
 - challenge: secure distribution of shared key
 - examples: DES, AES, IDEA
- Public key cryptography
 - secret key: will never be shared with anyone else
 - public key: can be shared freely
 - message encrypted with secret key can only be decrypted with corresponding public key (e.g., for authenticating the sender)
 - message encrypted with public key can only be decrypted with corresponding secret key (e.g., for providing confidentiality)
 - examples: RSA, Diffie-Hellman agreement protocol

Challenges of Security in WSNs

- Resource constraints
 - limited computational, networking, and storage capabilities of sensors
 energy constraints of sensors
- Lack of central control
 - large WSNs often don't have centralized control
 - requires distributed/decentralized security solutions
- Remote location
 - sensors often left unattended
 - difficult to prevent unauthorized physical access and tampering
- Error-prone communication
 - difficult to distinguish wireless communication errors from attacks

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Security in WSNs

- WSN characteristics that facilitate security:
 - self-managing and self-repairing nature
 - redundancy
- Data freshness problem
 - WSN security must ensure that sensor data are recent (and not replays of old data)
 - particularly important for key distribution schemes
- WSNs provide more opportunities for attacks than other networks
 - many sensor protocols require location information
 - many sensor nodes require accurate time synchronization
 - both can be affected by modifying, injecting, dropping messages (e.g., beacons) carrying such information

, , , ,

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Denial-of-Service (DoS)

- Attempt to stop network/system from functioning or providing a service
- Physical Layer DoS
 - jamming attack
 - interfere with the radio frequencies of a WSN
 - even small numbers of attacking nodes can be effective if well positioned (e.g., close to an important node such as a BS) or if their signals are strong
 - + countermeasure: spread-spectrum communication (e.g., FHSS)
 - tampering attack
 - attacker obtains physical access to sensor node
 - used to modify/destroy node, obtain sensitive information or use as entry points for further attacks into the network
 - countermeasures: tamper-proof materials and enclosures, disable device when attack detected

Denial-of-Service (DoS)

- Link Layer DoS
 - collision attack
 - attempt to interfere with packet transmissions
 - causes costly exponential backoff procedures and retransmissions
 often tries to cause collisions near the end of a frame, requiring
 - retransmission of entire frame
 exhaustion attack
 - attacks (such as collision attack) with the goal of premature depletion of a sensor's energy sources
 - example: issue RTS message to prompt CTS response from another node (exploiting handshake techniques)

10

12

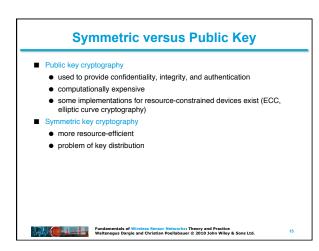
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

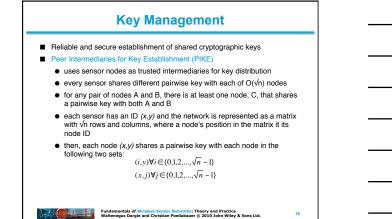
Attacks on Routing

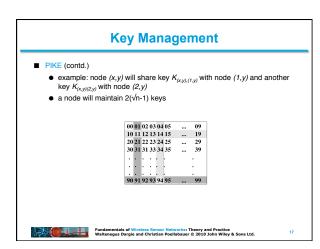
- Blackhole attack
 - malicious node on a route simply drops all packets
- Selective forwarding attack
 - similar to blackhole attack, but not all traffic is dropped
 - more difficult to detect (hard to distinguish attack from poor connectivity)
- Rushing attack
 - exploits route discovery techniques of on-demand protocols
 route request packets are rushed towards destination, increasing the malicious node's probability to be on the selected route
- Sinkhole attack
 - node attempts to position itself on as many network flows as possible
- Sybil attack
- attacker claims to have multiple identities or locations
- Wormhole attack
- out-of-band (bandwidth-rich) connection between attackers used to face short path to the gateway, attracting many flows to these nodes
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

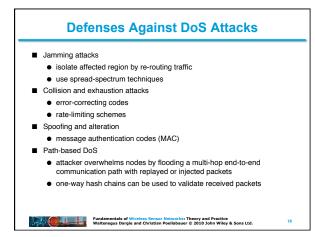
Attacks on Transport Layer

- Flooding attack
 - exploits fact that many transport protocols maintain state information and are therefore vulnerable to memory exhaustion
 - example: attacker makes many (incomplete) connection requests,
 - forcing a node to allocate more and more resources
- Desynchronization attack
 - attempt to disrupt communication between nodes by repeatedly forging messages to these nodes
 - example: fake packets carry old sequence numbers to make a node believe that its previous transmissions were not correctly received


Attacks on Data Aggregation


- Aggregation (and fusion) operations are often easily affected by an attacker
 average function f(x₁,...,x_n)=(x₁+...+x_n)/n
 - replacing a single measurement x₁ with a fake reading x₁*, the average will change from y=f(x₁,...,x_n) to f(x₁*,x₂,...,x_n) = y+(x₁*-x₁/n)
 attacker can choose x₁* and thereby determine outcome of aggregation
 - sum function f(x₁,...,x_n)=x₁+...+x_n
 replacing a single measurement x₁ with a fake reading x₁*
 - minimum function $f(x_1,...,x_n) = \min(x_1,...,x_n)$
 - replacing a single reading does not always lead to incorrect aggregation
 replacing x₁ with x₁* raises minimum if x₁ is unique smallest reading of all x₁
 replacing any xi with very small value can lower the minimum
 - similarly true for maximum function
 - count function: each sensor contributes 0 or 1 to the result
 changing k readings changes result by at most k
 may be negligible if k is small compared to the number of measurements


13


Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargle and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Defenses Against Aggregation Attacks

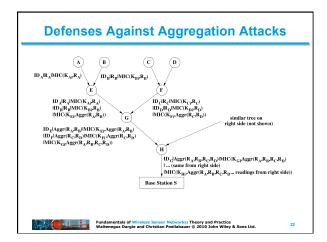
- Delayed aggregation and delayed authentication
 - base station generates a one-way key chain using a public one-way function *F*, where $K_i = F(K_{i+1})$
 - each device stores key K₀ before deployment (K₀=Fⁿ(K), i.e., F applied to a secret key n times)
 - first base station transmissions are encrypted using $K_1 = F^{n-1}(K)$
 - once all messages transmitted using K₁ have been received:
 the base station reveals K₁
 - All nodes compute F(K₁)=F(Fⁿ⁻¹(K)) and verify that it matches K₀=Fⁿ (K)
 - sensor nodes decrypt the messages

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Defenses Against Aggregation Attacks

Example:

- nodes A-D send messages to the base station, each node's message contains the sender's ID, the sensor data, and a MAC calculated over the data using a temporary key
- parent node cannot yet verify the MAC since it doesn't have the child's key
- parent node stores this message and retransmits it to its own parent after certain timeout value
- E's message to parent G contains messages received from its children (nodes A and B) and a MAC computed over the aggregate of A's and B's data using E's key
- this process continues, i.e., every parent combines data from its children and adds its own MAC over the aggregate using its own key
- once the base station receives messages from its children, it can compute the final aggregate value


Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Defenses Against Aggregation Attacks

Example (contd.):

- base station has shared temporary key with each sensor, therefore it can verify whether a received message was transmitted by H by calculating the MAC of the aggregation using K_{Hi} and comparing it to the MAC in the message
- this validates that H sent the final message, but it does not validate that the message correctly reflects the readings from the other nodes
- base station reveals the temporary keys to the network by sending each key (along with a MAC) to all sensor nodes using its own current key K_i
- base station sends out its current key K_i such that nodes can check the MAC values and to advance to the next key in the chain

21

Defenses Against Routing Attacks

- Attacks from "outside" versus "inside" the network
 - link-layer encryption and authentication can prevent adversary from joining a network, preventing many possible routing attacks
 - these techniques may be ineffective if network is attacked from the inside (e.g., using a compromised node)
- Sybil attacks
 - sensor nodes can share unique symmetric key with a trusted base station to verify each other's identity
 - base station can also limit the number of neighbors a node is allowed to have (i.e., a compromised node can communicate with only a few other nodes)
- Sinkhole attacks
 - difficult to defend against where protocols are used that establish routes based on information that it difficult to verify (e.g., energy)
 - easier for routes based on minimum hop counts, but hop counts can be misrepresented through a wormhole
 - with geographic routing, it is difficult to redirect traffic elsewhere to create a sinkhole

Fundamentals of <u>Wireless Sensor Networks</u>: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Defenses Against Routing Attacks

- Rushing attacks
 - secure neighbor detection approach can be used to allow sender and receiver of a route request to verify that the other party is in fact within normal transmission range
 - example of a three-round mutual authentication protocol:
 sender sends a neighbor solicitation packet
 - receiver responds with neighbor reply packet
 - sender sends a neighbor verification message (which includes broadcast authentication of a timestamp and the link from the source to the destination)

24

Security Protocols for Sensor Networks

SPINS provides:

- Secure Network Encryption Protocol (SNEP) for confidentiality, twoparty data authentication, and data freshness
- a "micro" version of the Timed, Efficient, Streaming, Loss-tolerant
- Authentication protocol (μTESLA) for authentication for data broadcast
 assumption is that every node has a secret key shared with the base station

Security Protocols for Sensor Networks

- Secure Network Encryption Protocol (SNEP)
 - symmetric security (same message is encrypted differently each time)
 - replay protection
 - low communication overhead
 - uses MAC for two-party authentication and integrity

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

- nodes A and B share a secret master key
- master key used to derive four independent keys using pseudorandom function
 - + two keys used for encryption of messages in each direction (K_{_{AB}} and K_{_{BA}})

26

two keys are used as message integrity codes (K'_{AB} and K'_{BA})

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargle and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Security Protocols for Sensor Networks

- Secure Network Encryption Protocol (SNEP) (contd.)
 - complete encrypted message:
 - $\mathsf{A} \twoheadrightarrow \mathsf{B}: \{D\}_{\{KAB,CA\}},\mathsf{MAC}(K'_{AB}C_{A}||\{D\}_{\{KAB,CA\}})$
 - D = data, K = key, C = counter, MAC computed as MAC(K', CILE)
 - provides authentication (using MAC)
 - provides replay protection (using counter value in MAC)
 - freshness (counter value enforces message ordering); considered weak since sending ordering is enforced within node B, but no absolute assurance to node A that message was created by B in response to an event in A (nonce can be added to obtain strong freshness)
 - semantic security (counter is encrypted with each message, i.e., same message will be encrypted differently)
 - low communication overhead (counter state is kept at each end point and is not sent in message)

Security Protocols for Sensor Networks

■ µTESLA

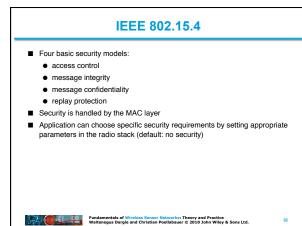
- extension of TESLA protocol (by considering resource limitations)
- focuses on need for authenticated broadcast in WSNs
- relies on symmetric mechanisms provided by SNEP to authenticate first packet in broadcast message
- TESLA uses digital signatures to authenticate initial packet and has an overhead of 24 bytes per packet
- µTESLA emulates asymmetric cryptographic mechanism through a delayed disclosure of symmetric keys
- µTESLA assumes that base station (BS) and sensor nodes are loosely time synchronized and each sensor knows upper bound on maximum synchronization error
- when BS sends a message, it authenticates it by computing a MAC on the packet with secret key
- when a node receives the packet, node knows that MAC key is only known to BS
- node stores packet until the BS broadcasts the verification key to all receivers

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinySec

- Lightweight and generic link-layer security package
- Can easily be integrated into sensor network applications
- Supports two different security options:
 - authenticated encryption (TinySec-AE)
 - data payload is encrypted
 - MAC is used to authenticate packet
 - authentication only (TinySec-Auth)
 entire packet is authenticated with MAC
 - payload is left unencrypted
- Relies on cipher block chaining (CBC) with specially formatted 8-byte initialization vector (IV) for encryption
- Relies on efficient and fast cipher block chaining construction (CBC-MAC) for computing and verifying MACs
 - using block cipher, number of cryptographic primitives that must be implemented
- is minimized
- length of MAC is 4 bytes (attacker must try at most 2³² blind forgeries)
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Localized Encryption and Authentication Protocol


- LEAP is a key management protocol for sensor networks, designed to support innetwork processing
- Key observation is that different types of packets (control versus data) have different
 - security requirements
- LEAP provides four keying mechanisms:
 - individual keys
 - + every node has unique key shared with BS
 - key used for confidentiality and MAC
 - group keys
 - globally shared key used by BS to communicate with entire network
 cluster keys
 - shared key between sensor and its neighbors
 - used for securing local broadcast messages
 - pairwise shared keys
 - shared key between sensor and one of its immediate neighbors

Localized Encryption and Authentication Protocol

- LEAP also provides a technique for local broadcast authentication
 - every node generates a one-way key chain of certain length
 - every node transmits the first key in the chain to each neighbor (encrypted with the pairwise shared key)
 - whenever a node sends a message, it takes the next key from the chain (each key is called an AUTH key) and attaches it to message
 - keys are disclosed in reverse order of their generation and a receiver can verify the message based on the first received key or a recently disclosed AUTH key

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

31

Name	Description
Null	No security
AES-CTR	Encryption only, CTR mode
AES-CBC-MAC-1	28 128-bit MAC
AES-CBC-MAC-6	4 64-bit MAC
AES-CBC-MAC-3	2 32-bit MAC
AES-CCM-128	Encryption and 128-bit MAC
AES-CCM-64	Encryption and 64-bit MAC
AES-CCM-32	Encryption and 32-bit MAC

ZigBee Security

- Introduces the concept of trust center (responsibility assumed by the ZigBee coordinator)
 - responsible for authentication of devices wishing to join network (trust manager)
 - responsible for maintaining and distributing keys (network manager)
 - responsible for enabling end-to-end security (configuration manager)
- Residential mode
 - trust center allows nodes to join network, but does not establish keys with the network devices
- Commercial mode
 - trust center generates and maintains keys and freshness counters with every device in the network
 - large memory cost

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

ZigBee Security

- ZigBee uses the CCM* mode for security, which is a combination of CTR mode and CBC-MAC mode
- Compared to CCM, CCM* offers encryption-only and integrity-only capabilities
- ZigBee has several levels of security, including:
 - no security
 - encryption only
 - authentication only
- encryption and authenticationZigBee's MAC can vary from 4 to 16 bytes

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargle and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 35