
1!

Chapter 12: Sensor Network
Programming

2!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Chapter 12: Roadmap

  Challenges!
  Node-centric programming!
  Macroprogramming!
  Dynamic reprogramming!
  Sensor network simulators!

3!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Challenges in WSN Programming

  Reliability!
  resilience to changes and failures is important in WSNs!
  should be supposed by a programming environment!

  Resource constraints!
  resource limitations of WSNs affect maximum code size, performance,

memory/storage capacities!
  programming environment should allow programmer to exploit energy-

saving techniques !
  Scalability!

  sensor networks can be very large, i.e., programming models must
scale!

  manual configuration, maintenance, repair may be infeasible!
  Data-centric networks!

  focus is on the data, not the devices!

2!

4!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Node-Centric Programming

  Programming abstractions, languages, and tools focus on development of
SW on a per-node basis!

  Overall network-wide sensing task is then a collection of pairwise
interactions of sensor nodes!

5!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  TinyOS and nesC have become the de facto standard in WSN programming!
  nesC is an extension to C programming language!
  Provides set of language construct to implement SW for sensors!

  nesC applications consist of a collection of components and each
component has “provides” and “uses” interfaces!
  interface: describes the use of some kind of service!
  provides: set of method calls that are exposed to higher layers!
  uses: set of method calls that hide details of lower-layer components!

6!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

module TimerModule {!
!provides {!
! !interface StdControl;!
! !interface Timer;!
!}!
!uses interface Clock as Clk;!

}!

interface StdControl {!
!command result_t init ();!

}!

interface Timer {!
!command result_t start (char type, uint32_t interval);!
!command result_t stop ();!
!event result_t fired ();!

}!

3!

7!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

interface Clock {!
!command result_t setRate (char interval, char scale);!
!event result_t fire ();!

}!

interface Send {!
!command result_t send (TOS_Msg *msg, uint16_t length);!
!event result_t sendDone (TOS_Msg *msg, result_t success);!

}!

interface ADC {!
!command result_t getData ();!
!event result_t dataReady (uint16_t data);!

}!

8!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  Example: timer interface:!
  two types of commands (functions): start, stop!

 commands are implemented by providers of an interface!
  event (function)!

 events are implemented by the users!
  Components have an implementation!

  modules are components implemented by application code!
  configurations are components implemented by connecting interfaces of

existing components!
  every nesC application has a top-level configuration!

 describes how components are “wired together”!
  functions are described as f.i (f is a function in an interface i)!
  functions are invoked using the call operation (for commands) and the

signal operation (for events)!

9!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

module PeriodicSampling {!
!provides interface StdControl;!
!uses interface ADC;!
!uses interface Timer;!
!uses interface Send;!

}!

4!

10!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

implementation P!
!uint16_t sensorReading;!

!command result_t StdControl.init () {!
! !return call Timer.start (TIMER_REPEAT, 1000);!
!}!
!event result_ Timer.fired () {!
! !call ADC.getData ();!
! !return SUCCESS;!
!}!
!event result_t ADC.dataReady (uint16_t data) {!
! !sensorReading = data;!
! !…!
! !return SUCCESS;!
!}!
!…!

}!

11!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  StdControl.init is called at boot time!
  creates a timer that expires every 1000ms!
  upon time expiration, a new sensor sample is obained!
  ADC.getData triggers actual sensor data acquisition (ADC.dataReady)!

12!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  Example of wiring subcomponents: timer service in TinyOS (TimerC)!

! !configuration TimerC {!
! ! !provides {!
! ! ! !interface StdControl;!
! ! ! !interface Timer;!
! ! ! !}!
! !}!
! !implementation {!
! ! !components TimerModule, HWClock;!

! ! !StdControl = TimerModule.StdControl;!
! ! !Timer = TimerModule.Timer;!

! ! !TimerModule.Clk -> HWClock.Clock;!
! !}!

5!

13!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  In TinyOS, code executes either asynchronously (in response to interrupt)
or synchronously (as a scheduled task)!

  Asynchronous code (AC): nesC code that is reachable from at least one
interrupt handler!

  Synchronous code (SC): nesC code that is reachable only from tasks!
  always atomic to other synchronous codes (tasks are always executed

sequentially and without preemption)!
  Race conditions occur when concurrent updates to shared state are

performed!
  shared state is modified from AC or!
  shared state is modified from SC that is also modified from AC!

14!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

nesC Programming Language

  nesC provides two options to ensure atomicity!
  convert all sharing code to tasks (SC only)!
  use atomic sections to modify shared state!

…!
event result_t Timer.fired () {!
!bool localBusy;!
!atomic {!
! !localBusy = busy;!
! !busy = TRUE;!
!}!
!…!

}!
…!

  Nonpreemption can be obtained by disabling interrupts during atomic
section (no call/signal allowed to ensure that atomic sections are brief)!

15!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  Globally Asynchronous and Locally Synchronous (GALS)!
  TinyGALS consists of modules composed of components!
  A component C has!

  set of internal variables VC!

  set of external variables XC!

  set of methods IC (that operate on these variables)!
  Methods are further divided: !

  calls in the ACCEPTSC set (can be called by other components)!
  calls in the USESC set (needed by C and may belong to other

components)!

6!

16!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  TinyGALS defines components using an interface definition and
implementation (similar to nesC)!

COMPONENT DownSample!
ACCEPTS {!
!void init (void);!
!void fire (int in);!

};!
USES {!
!void fireOut (int out);!

};!

17!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  Implementation for the DownSample component (_active is an internal
boolean variable that ensures that for every other fire() method, the
component will call fireOut() with the same integer argument)!

void init () {!
!_active = true;!

}!
void fire (int in) {!
!if (_active) {!
! !CALL_COMMAND (fireOut) (in);!
! !_active = false;!
!} else {!
! !_active = true;!
!}!

}!

18!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  TinyGALS modules consist of components!
  Module M is a 6-tuple !
!M=(COMPONENTSM,INITM,INPORTSM,OUTPORTSM,PARAMETERSM,LINKSM)!

COMPONENTSM … set of components of M!
INITM … list of methods of Mʼs components!
INPORTSM … inputs of the module!
OUTPORTSM … outputs of the module!
PARAMETERSM … set of variables external to the components!
LINKSM … relationship between the method call interfaces and the inputs and

outputs of the module!

7!

19!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  Modules are connected to each other to form complete TinyGALS system,
where a system is a 5-tuple!

S=(MODULESS,GLOBALSS,VAR_MAPSS,CONNECTIONSS,STARTS)!
!MODULESS … set of modules!
!GLOBALSS … global variables!
!VAR_MAPSS … set of mappings (map global variable to a parameter of a module)!
!CONNECTIONSS … list of connections between module output and input ports!
!STARTS … name of an input port of exactly one module (starting point for
execution)!

20!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyGALS

  Highly structured architecture of TinyGALS can be exploited to automate the
generation of scheduling and event handling code!
  frees developers from writing error-prone concurrency control code!

  Code generation tools can automatically produce: !
  all necessary code for component links and module connections !
  code system initialization!
  code for start of execution !
  code for intermodule communication!
  code for global variables reads and writes!

  Modules use message passing and are therefore decoupled from each other (easier
independent development)!
  each message triggers scheduler and activate receiving module!
  TinyGUYS (Guarded Yet Synchronous) variables:!

  modules read global variables without delay (synchronously)!
  modules write global variables using buffer (asynchronously)!

–  buffer size is 1 (i.e., last writing module wins)!

21!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Sensor Network Application Construction Kit

  SNACK consists of a configuration language, component and service
library, and compiler!

  Goals are:!
  to provide smart libraries that can be combined to form WSN

applications!
  to simplify the development process!
  to be efficient!

  It should be possible to write simple pieces of code such as:!
SenseTemp -> [collect] RoutingTree;!
SenseLight -> [collect] RoutingTree;!

8!

22!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Sensor Network Application Construction Kit

  Syntax of SNACK code:!
service Service {!
!src :: MsgSrc;!
!src [send:MsgRcv] -> filter :: MsgFilter -> [send] Network;!
!in [send:MsgRcv] -> filter;!

}!

  n::T declares an instance named n of a component type T (i.e., an instance
is an object of a given type)!

  n[i:τ] indicates an output interface on component n with name i and
interface type τ (similarly, [i:τ]n is an input interface)!

  A component provides its input interfaces and uses its output interfaces!

23!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Sensor Network Application Construction Kit

  SNACK library!
  variety of components for sensing, aggregation, transmission, routing, and data

processing!
  several core components supported!

  Network: receives/sends messages from/to TinyOS radio stack!
  MsgSink: ends inbound call chains and destroys received buffers!
  MsgSrc: generates periodic empty SNACK messages and passes them to

outbound interface!
  Timing:!

–  TimeSrc: generates a timestamp signal sent over signal interface at
specified minimum rate!

–  TimeSink: consumes such signals!
  Storage: implemented by components such as Node-Store64M, which

implements an associative array of eight-byte values keyed by node ID!
  Service: variety of services (e.g., RoutingTree implements a tree designed to

send data up to some root)!

24!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Thread-Based Model

  Multiple tasks allowed to make progress in execution without concern that a
task may block other tasks (or be blocked) indefinitely!

  Task scheduler manages task execution!
  example: time-slicing approach, where tasks execute for certain amount

of time!
  MANTIS (MultimodAl system for NeTworks of In-situ wireless Sensors)!

  thread-based operating system for WSNs!
  memory-efficient!

  requires less than 500 bytes of RAM!
 14 kbytes of flash memory!

  energy-efficiency!
 microcontroller switches to low-power sleep state after all active

threads have called the sleep() function!

9!

25!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Thread-Based Model

  TinyThread!
  adds support for multithreaded programming to TinyOS and nesC!
  procedural programming of sensors!
  includes suite of interfaces that provide blocking I/O operations and

synchronization primitives!
  Protothreads!

  lightweight stackless type of threads; all protothreads share the same stack!
  context switch is done by stack rewinding!
  variables must be saved before calling a blocking wait (variables with function-

local scope that are automatically allocated on stack are not saved across wait
calls)!

  Y-Threads!
  preemptive multithreading (distinguish preemptable from nonpreemptable code)!
  shared stack for nonblocking parts, thread-specific stack for blocking calls!

  blocking portions of code require only small amounts of stack, leading to
better memory utilization compared to other preemptive approaches!

26!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  Focus on programming group of nodes, instead of individual nodes!
  Abstract Regions!

  focuses on group-level cooperation!
 group of nodes working together to sample, process, and

communicate sensor data!
  region-based collective communication interface!
  defines neighborhood relationship between nodes!

  “the set of nodes within distance d”"
  type of definition of abstract region depends on the type of application!
  examples of implementations of abstract regions!

 N-radio hop (nodes within N radio hops)!
 k-nearest neighbor (k nearest nodes within N radio hops)!
 spanning tree (rooted at a single node, used for data aggregation

over entire network)!

27!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  Abstract Region (contd.)!
  example:!

  regions defined using hop distances!
 discovery of region members using periodic broadcasts

(advertisements)!
 data can be shared between region members using a

“push” (broadcasting) or “pull” (issue a fetch message) approach!

10!

28!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  EnviroTrack!
  object-based middleware library!
  geared toward target-tracking sensor applications!
  free developer from details of!

  interobject communication!
 object mobility!
 maintenance of tracking objects and their state!

  also uses the concept of groups, which are formed by sensors which
detect certain user-defined entities in the physical environment!

  groups are identified by context labels (logical addresses that follow the
external tracked entity around in the physical environment)!

29!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  EnviroTrack (contd.)!
  tracking objects: objects can be attached to context labels to perform

context-specific operations; executed on the sensor group of the context
label!

  type of context label depends on entity (e.g., context label car is created
wherever a car is tracked)!

  context label of some type e:!
  function sensee(): describes sensory signature identifying tracked

environmental target (car: magnetometer and motion sensor
readings)!
  also used to track group membership!

  aggregation function statee(): environmental state shared by all
objects attached to a context label!
  acts on the readings of all sensors for which sensee() is true!

  aggregation is performed by sensor node acting as group leader!

30!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  Database approaches treat entire WSN as a distributed database that can
be queried!

  TinyDB!
  network is represented logically as a table (called sensors)!

 one row per node per instant in time!
 each column corresponds to sensor readings (light, temperature,

pressure, …)!
 new record is added when a sensor is queried!
 new information is usually stored for a short period of time only!

  queries are like SQL-based queries (SELECT, FROM, WHERE, etc.)!
SELECT nodeid, light, temp!
!FROM sensors!
!SAMPLE PERIOD 1s FOR 10s!

  initiates data collection at beginning of each epoch (specified in SAMPLE
PERIOD clause); results are streamed to the root of the network!

11!

31!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Macroprogramming

  TinyDB (contd.)!
  supports group aggregation queries!
  example: monitoring microphone-equipped rooms; look for rooms where

the average volume is over a certain threshold:!
SELECT AVG(volume), room FROM sensors!
!WHERE floor = 6!
!GROUP BY room!
!HAVING AVG(volume) > threshold!
!SAMPLE PERIOD 30s!

  Similar projects!
  Cougar: resource-efficient database appraoch!
  SINA: models WSN as collection of distributed objects; supports SQTL

scripts in SQL queries!
  MiLAN: sensor applications can specify QoS needs!

32!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming

  Sometimes necessary to disseminate code to all or some sensor nodes!
  Virtual machines!

  Maté !
 small VM on top of TinyOS!
 capsules (sequence of 24 instructions) inside a single TinyOS

packet!
 every capsule includes type and version information!

–  message send capsules!
–  message receive capsules!
–  timer capsules!
–  subroutine capsules!

 programs execute in response to events (e.g., timer firing, packet
being sent/received)!

 each event has a capsule and an execution context!

33!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming

  Virtual machines (contd.)!
  Maté (contd.)!

  jumps to first instruction of capsule and executes until halt instruction!
  when subroutine called, return address is pushed onto a return address

stack; upon return, address is taken from the stack!
  Trickle!

  controlled flooding protocol for disseminating small pieces of code!
  uses metadata to describe code (allows node to determine if code update

needed)!
  metadata is exchanged among neighbors via broadcast!

  periodic time intervals, each node randomly selects broadcast time during
each interval!

  when a node hears outdated metadata, it broadcasts its own code, giving
outdated node chance to update!

  when a node overhears newer metadata, it broadcasts its own metadata,
triggering the neighbor to broadcast newer code!

12!

34!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming

  Melete!
  similar to Maté and Trickle!
  supports multiple concurrent applications!
  supports selective dissemination by limiting dissemination range!

  code is only forwarded within a forwarding region!
  Deluge!

  occasionally advertises the most recent code version using broadcasts!
  if a node receives an update with old code, it responds with new code version

(allowing neighbor to request new code)!
  eliminates redundant advertisements and request messages!
  provides robustness!

  uses a three-phase handshake to ensure that only symmetric links are used!
  allowing a node to search for a new neighbor to request code if it has not

completely received the code after k requests!
  dynamically adjusts rate of advertisements for quick propagation when needed,

but consuming few resources in steady state!

35!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming

  Pump Slowly, Fetch Quickly (PSFQ)!
  slowly pace propagation of packets (pump slowly)!
  aggressively fetch lost packets (fetch quickly)!
  nodes do not relay packets out of order!
  prevents loss events from propagating downstream !
  localized recovery allows nodes to recover lost packets from immediate

neighbors (reduces recovery costs)!
  Push Aggressively with Lazy Error Recovery (PALER)!

  based on observation that pushing data downstream and recovering lost packets
simultaneously leads to excessive contention!

  eliminates in-order reception requirement!
  pushes all data aggressively!
  nodes keep list of missing packets and request retransmission after the

broadcast period!
  retransmission requests are handled by neighbors (if they donʼt have a copy of

missing data, they issue their own request to their neighbors)!

36!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Sensor Network Simulators

  Large scale of sensor networks makes implementation and experimentation
difficult and expensive!

  Instead, simulation is used to evaluate novel WSN tools, mechanisms,
protocols, and applications!

  Quality of simulations depends on choice of appropriate models for!
  sensor node hardware/software characteristics!
  wireless communication!
  physical environment!
  node mobility!

  Simulators typically come with tools for collecting, analyzing, and visualizing
sensor data!

13!

37!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

ns-2

  Discrete event simulator called network simulator (ns-2) !
  Written in C++ and Otcl!
  Highly extensible, many extensions have been developed, e.g.:!

  extension adding the concept of a phenomenon (physical event)!
 uses broadcast packets over designated channel to represent

physical phenomena (fire, moving vehicle, chemical cloud)!
 uses PHENOM routing protocol: emits packets with certain

configurable pulse rate and whose arrival triggers a receive event!
  many routing protocols!
  many MAC-layer protocols!
  variations of packet contents!
  models for multi-homed devices!
  mobility models!

38!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

GloMoSim and QualNet

  GloMoSim!
  based on the PARSEC (PARallel Simulation Environment for Complex

systems) simulation environment!
 C-based simulation language !
  represents sets of objects in physical environment as logical

processes!
  represents interactions among these objects as time-stamped

message exchanges!
  supports variety of models at different protocol layers!
  supports different mobility models!
  intended for academic use!

  QualNet!
  commercial version of GloMoSim!
  produced by Scalable Network Technologies, Inc.!

39!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

JiST/SWANS

  Java in Simulation Time (JiST)!
  discrete event simulator!
  efficient!

  run program in parallel!
 dynamically optimize simulator configuration!

  transparent!
  transform simulation programs automatically to run with simulation

time semantics (instrument simulations such that no programmer
intervention or calls to specialized libraries are needed to support
concurrency, consistency, reconfiguration, etc.)!

  Scalable Wireless Ad hoc Network Simulator (SWANS)!
  built on top of JiST!
  collection of independent SW components that can be aggregated to

form complete wireless (ad hoc) simulations!

14!

40!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

OMNeT++

  Objective Modular Network Testbed!
  discrete event simulator for simulating communication networks,

multiprocessors, and distributed systems!
  open-source based on C++!
  models consist of modules that communicate using message passing!

 simple modules and compound modules!
  uses topology description language NED to define structure of a module!
  includes graphical editor!
  lacks protocol models!

41!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TOSSIM

  Simulator for TinyOS-based networks!
  Generates discrete event simulations directly from TinyOS components

(i.e., runs the same code that runs on the sensors)!
  Replaces low-level components (e.g., interrupts) with events in the

simulations!
  Simulator event queue delivers these events to components!
  Works at bit level, i.e., event is generated for each sent or transmitted bit!

  allows for experimentation with low-level protocols!
  TinyViz: visualization tool!
  Very scalable and extensible!
  Lacks energy profiling and use is limited to TinyOS systems!

42!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

EmStar

  Targeted at high capability nodes called microservers (e.g., cluster heads)!
  Consists of a Linux microkernel extension, libraries, and several tools!
  EmSim: operates many virtual nodes in parallel in a simulation that models

radio and sensor channels!
  EmCee: runs the EmSim core and is an interface to real low-power radios!
  EmView: graphic visualizer!

15!

43!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Avrora

  Flexible simulator framework in Java!
  Each node is its own thread and code is executed instruction-by-instruction!
  Event queue:!

  targets nodes operating in long sleep modes!
  event queue takes advantage of that to boost performance!
  when node sleeps, only a time-triggered event that causes an interrupt

can wake up the node!
  such an event is inserted into event queue of the node to be woken up

at a certain time!
  simulator processes events in order until one of them triggers a

hardware interrupt, which re-awakes a node!
  Fast and scalable simulator; can simulate down to the level of individual

clock cycles!

