

Structural Health Monitoring

Motivation

events:

- on August 2, 2007, a highway bridge unexpectedly collapsed in Minnesota
- nine people were killed in the event
- potential causes: wear and tear, weather, and the weight of a
- nearby construction project
- in fact, the BBC reported (August 14, 2007) that China had identified more than 6,000 bridges that were damaged or considered to be dangerous
- these accidents motivate wireless sensor networks for monitoring bridges and similar structures

- Motivation:
 - traditional inspections:

consuming

- visual inspection → everyday
 - labor-intensive, tedious, inconsistent, and subjective
- detailed inspection → at least every five years on selected bridges
- special inspections → according to technical needs the rest require sophisticated tools → expensive, bulky, and power
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Local and Global Inspections

- Local inspection techniques focus on detecting highly localized, imperceptible fractures in a structure
 - requires:
 - a significant amount of time
 - the disruption of the normal operation of the structure
- Global inspection techniques aim to detect a damage or defect that is large enough to affect the entire structure
 - researcher have been developing and testing wireless sensor networks as global inspection technique

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Wisden

- First prototype to employ WSN for monitoring structural health
 - first deployment for conducting seismic experiments
 - on an imitation of a full-scale 28×28 square foot hospital ceiling
 - the overall weight which the ceiling supports is approximately 12,000 pounds
 - second deployment
 - 25 nodes (a tree topology) and a 16 bit vibration card
 - a high-sensitive triaxial accelerometer is attached to the vibration card
 - designed for high-quality, low-power vibration sensing
 - the task of the network was to reliably send time-synchronized vibration data to a remote sink over a multi-hop route
 - NACK
 - hop-by-hop scheme

Golden Gate Bridge

- 64 wireless sensor nodes deployed on this bridge
- The network monitors ambient vibrations synchronously
- 1 KHz rate, ≤10µs jitter, accuracy=30µG, over a 46 hop network
 The *goal* of the deployment:
 - determine the response of the structure to both ambient and extreme conditions
 - compare actual performance to design predictions
 - measure ambient structural accelerations from wind load
 - measure strong shaking from a potential earthquake
 - the installation and the monitoring was conducted without the disruption of the bridge's operation

Outline	
Structural Health Monitoring Wisden Golden Gate Bridge Traffic Control Knalan Arora	
Health Care Artificial Retina Parkinson Disease	
Pipeline Monitoring PipeNet	
Precision Agriculture Wine Vinyard Lofar Agro Active Volcano	
Volcán Tungurahua Underground Mining Madaenatak of Wireless Senser Metawaks Theory and Practice	
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.	9

Traffic Control

- Motivation:
 - ground transportation is a vital and a *complex* socio-economic infrastructure
 - it is linked with and provides support for a variety of systems,
 - such as supply-chain, emergency response, and public health the 2009 Urban Mobility Report reveals that in 2007, congestion caused urban Americans to
 - travel 4.2 billion hours more
 - purchase an extra 2.8 billion gallons of fuel
 - congestion cost is very high \$87.2 billion; an increase of more than 50% over the previous decade

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

10

12

The Sensing Task

- Inductive loops (in-road sensing devices)
 - advantages:
 - unaffected by weather
 - provide direct information (few ambiguity)
 - how does it work: using Faraday's induction law
 - a coil of wire (several meters in diameter, passes an electric current through the coil)
 - buried under the road and connected to a roadside control box
 - magnetic field strength can be induced as a result of a current and the speed and the size of passing vehicles

```
Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.
```

Magnetic Sensors

- Magnetic sensors can determine the *direction* and *speed* of a vehicle
 - a moving vehicle can disturb the distribution of the magnetic field
 by producing its own magnetic field
 - by cutting across it
- The magnitude and direction of the disturbance depends on
 - the speed, size, density and permeability of the vehicle
- Classification of magnetic sensors:
 - low field (below 1µGauss)
 - medium field (between 1µGauss and 10µGauss)
 - high field (above 10µGauss)
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

13

15

Magnetic Sensors

- Almost all road vehicles *contain* a large mass of *steel*
- The magnetic *permeability of steel is* much *higher* than the surrounding air
- Steel has the capacity to concentrate the flux lines of the Earth's magnetic field
- The concentration of magnetic flux varies as the vehicle moves; it can be detected from a distance of up to 15m
- The field variation reveals a *detailed* magnetic signature
- It is possible to distinguish between different types of vehicles

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

5

Knaian (2000)

- Proposes wireless sensor networks for traffic monitoring in urban areas
- The node consists of
 - two AMR magnetic sensors to detect vehicular activities
 by observing the disturbance in the Earth's magnetic field the vehicular creates
 - the vehicle pulls field lines away from the sensor when it approaches it
 - $\boldsymbol{\ }$, then towards the sensor when it drives away from it
 - a temperature sensor to monitor road condition (snow, ice, or water)

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 17

18

Knaian (2000)

- To measure the speed of a vehicle, the node waits until it detects an excursion from the predefined baseline and then starts sampling at a frequency of 2KHz
 - two AMR magnetic sensors are placed one at the front of the node and the other at the back - they are shifted in time
 - the node waits for the signal from the rear sensor to cross the baseline
 - then it begins to *count* the number of *samples* until the signal from the forward sensor crosses the baseline
 - from this count, it *computes* the *speed* of the passing vehicle

Arora et al. (2004)

- Deploys 90 sensor nodes to detect the movement of vehicles and people (e.g., soldiers)
 - 78 of the nodes were *magnetic sensor nodes* that were deployed in a 60×25 square foot area

19

21

- 12 radar sensor nodes were overlaid on the network
- These nodes form a *self-organizing* network which connects itself to a remote computer via a base station and a long haul radio repeater

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Health Care

- A wide range of health care applications have been proposed for WSN, including *monitoring patients* with:
 - Parkinson's Disease and epilepsy
 - heart patients
 - patients rehabilitating from stroke or heart attack
 - elderly people
- Health care applications do not function as standalone systems
- They are *integral parts* of a comprehensive and complex health and rescue system

Health Care

- Motivation:
 - cost is very high
 - according to the US Centers for Medicare and Medicaid Services (CMS):
 - the national health spending of the country in 2008 was estimated to be \$2.4 trillion USD
 - the costs caused by heart disease and stroke are around \$394 billion
 - this is a concern for policy makers, health care providers, hospitals, insurance companies, and patients
 - higher spending does not imply quality service or prolonged lifetime (Kulkarni and Öztürk 2007)
 - for example, in 2000, the US spent more on health care than any other country in the world – an average of \$4,500 USD per person but ranked 27th in average life expectancy

22

24

- many countries achieve higher life expectancy rates at a lower cost
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Health Care

- To deal with these problems, researchers proposed comprehensible solutions that involve the following tasks:
 - building pervasive systems that provide patients with rich information about diseases and their prevention mechanisms
 - seamless integration of health infrastructures with emergency and rescue operations as well as transportation systems
 - developing reliable and unobtrusive health monitoring systems that can be worn by patients to reduce the task and presence of medical personnel
 - alarming nurses and doctors when medical intervention is necessary
 - reducing inconvenient and costly check-up visits by creating reliable links between autonomous health monitoring systems and health institutions

Commercially Available Sensors

- Pulse oxygen saturation sensors
- Blood pressure sensors
- Electrocardiogram (ECG)
- Electromyogram (EMG) for measuring muscle activities
- Temperature sensors (core body temperature and skin temperature)
- Respiration sensors
- Blood flow sensors
- Blood oxygen level sensor

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Artificial Retina

- Schwiebert et al. (2001) developed a micro-sensor array that can be *implanted in the eye* as an artificial retina to assist people with visual impairments
- The system consists of an integrated circuit and an array of sensors
- An integrated circuit
 - is coated with a *biologically inert substance*
 - is a multiplexer with on-chip switches and pads to support a 10×10 grid of connections; it operates at 40KHz
 - has an *embedded transceiver* for wired and wireless communications
 - each connection in the chip interfaces a sensor through an aluminum probe surface
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Artificial Retina

- An array of sensors
 - each sensor is a micro-bump, sufficiently small and light
 - the distance between adjacent micro-bumps is approximately 70 microns
 - the sensors produce electrical signals proportional to the light reflected from an object being perceived
 - the ganglia and additional tissues transform the electrical energy into a chemical energy
 - the chemical energy is *transformed* into *optical signals* and *communicated to the brain* through the optical nerves
 - the magnitude and wave shape of the transformed energy corresponds to the response of a normal retina to light stimulation

- neurological signals from the ganglia can be picked up by the micro-sensors and transmitted out of the sensing system to an external signal processor
- Two types of wireless communications are foreseen

Parkinson's Disease

- The aim is to augment or entirely replace a human observer and to help physicians fine-tune medication dosage
- Weaver (2003)
 - the system consists of
 - a lightweight sensor node with 3D accelerometer sensors (sampled at a rate of 40Hz.)

31

- a processor core
- a storage system for logging data for latter retrieval
- the system could record 17 hours of accelerometer data
- the patients wear the nodes in their ankles and wrists
- the report reveals that the system was able to identify the occurrence of dyskinesia at the rate of 80%

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Pipeline Monitoring

- Objective: monitoring gas, water and oil pipelines
- Motivation:
 - management of pipelines presents a formidable challenge
 - long length, high value, high risk
 - difficult access conditions
 - requires continuous and unobtrusive monitoring
 - *leakages* can occur due to excessive deformations
 - earthquakes
 - landslides or collisions with an external force
 - corrosion, wear, material flaws
 - intentional damage to the structure

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

PipeNet Motivation: sewerage systems convey *domestic sewage*, *rainwater runoff*, and *industrial wastewater* to sewerage treatment plants *historically*, these systems are designed to *discharge* their content to *nearby streams* and *rivers*subsequently, *combined sewer* overflows are among *the major* sources of water quality *impairment*nearly 770 large cities in the US, mainly older communities, have combined sewer systems (Stoianov et al. 2007)

PipeNet

- The PipeNet prototype has been developed to monitor water pipelines in urban areas
- The task is to monitor:
 - hydraulic and water quality by measuring pressure and pH
 - the water level in combined sewer systems
 sewer collectors and combined sewer outflows

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Three different settings

First setting:

- pressure and pH sensors are installed on a 12 inch cast-iron pipe
- pressure sensor is a modified version of the OEM piezoresistive silicon sensor
- pressure data is collected every 5 minutes at a rate of 100 Hz for a period of 5s
- a pH sensor is a glass electrode with an Ag/AgCl reference cell
- pH data is collected every 5 minute for a period of 10s at a rate of 100 Hz
- the sensor nodes use a Bluetooth transceiver for wireless communication

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Three different settings

Second setting:

- a pressure sensor measures the pressure in 8 inch cast iron pipe
 the data are collected every 5 minutes for a period of 5 s at a
- sampling rate of 300 Hz
- for this setting the raw data was transmitted to a remote gateway

Three different settings

- Third setting:
 - the water level of a combined sewer outflow collector is monitored
 - two pressure transducers (low-power device, < 10 mW) were placed at the bottom of the collector
 - an ultrasonic sensor (high-power device, < 550 mW) was placed on top of the collector
 - efficient power consumption:
 - pressure sensors are employed for periodic monitoring
 - when the difference of pressure sensors and the ultrasonic sensor exceeds a certain threshold; or
 - when the water level exceeds the weir height
 - the ultrasonic sensor is required to verify the readings from the pressure sensors

Wine Vinyard (2004)

Motivation:

- in a vineyard, temperature is the predominant parameter that affects the quality as well as the quantity of the harvest
- grapes see no real growth until the temperature goes above 10°C
- different grapes have *different requirements* for heat units
- subsequently, the deployment aims to
 - measure the temperature over a 10°C baseline that a site accumulates over the growing season

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Wine Vinyard (2004)

- Beckwith et al. deploy a WSN to monitor and characterize variation in temperature of a wine vineyard
 - heat summation and periods of freezing temperatures
- 65 nodes in a grid like pattern 10 to 20 meters apart, covering about two acres
- *Easy to develop* the network (1 person day)
 - due to the self-configuration nature of the network
 - · inherent structured layout of vineyard fields
- Two essential constraints of the network topology
 - placement of nodes in an area of viticulture interest
 - the support for multi-hop communication

Wine Vinyard (2004)

- The data were used to investigate several aspects:
 the existence of *co-variance between the temperature* data collected by the network
 - growing degree day differences
 - potential frost damage
- The mean data enabled to observe the relative differences between heat units accumulation during that period
 - according to the authors' report, the extent of variation in this vineyard – there was a measured difference of over 35% of heat summation units (HSUs) in as little as 100 meters

Fundamentals Waltenegus Da

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Lofar Agro (2005)

- WSN at Lofar Agro, the Netherlands
- The network was tasked to *monitor phytophtora*
 - phytophtora is a fungal disease in a potato field
- Climatological conditions are the main causes of phytophtora
 - monitoring the humidity and temperature conditions in the field
 - monitoring the wetness of the potato leaves
 - determining the potential risk of the disease and the need for fungicides

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Lofar Agro (2005)

- Implementation:
 - 150 wireless sensor nodes (heights of 20, 40, and 60 cm)
 temperature and humidity sensors
 - additional 30 nodes (75 cm) to ensure the network's connectivity
 the radio range of the nodes reduced when the potato crop was
 - flowering the nodes sampled temperature and humidity at a rate of 1 sample per minute and stored the result temporarily
 - the data were communicated to a remote base station every 10
 minutes

Lofar Agro (2005)

- Implementation:
 - delta encoding and periodic sleeping to efficiently utilize energy
 delta encoding: ten samples were encoded in a single packet
 - the sampled data were logged at a server

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

- the server filtered out erroneous readings and handed the accumulated data to the Phytophthora decision support system (DSS) server
- finally, the decision support system combined the field data with a detailed weather forecast to determine the treatment policy

Active Volcano

- Volcanoes occur when broken slabs of the Earth's outermost shell – lithosphere – collide
 - float on the hotter and softer layer in the Earth's mantle
- Motivation:
 - most of Earth's volcanoes are hidden from view
 - occurring on the ocean floor along spreading ridges
 - at present, typical active volcances are monitored using expensive devices that are difficult to move or require external supply voltage
 - the deployment and maintenance of these devices *require* vehicle or helicopter assistance
 - data storage must be retrieved on a periodic basis

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

51

Active Volcano

WSNs can be very useful for active volcano monitoring
 a large number of small, cheap, and self-organizing nodes

- can be deployed to cover a vast field
- Advantage of WSNs in active volcano monitoring
 - fast and economical deployment
 - possible to achieve high spatial diversity
 - the networks can operate without requiring stringent maintenance routines

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Volcán Tungurahua

- Volcán Tungurahua in central Ecuador (2004)
 - 3 sensor nodes
 - integrate microphones
- Volcán Reventador in northern Ecuador (2005)
 - 16 sensor nodes
 - integrate seism acoustic sensors
 - linear topology (3km)

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Volcán Tungurahua

- An important task in active volcano monitoring is to capture discrete events
 - eruptions, earthquakes, or tremor activities
 - these events are transient
 - having duration of less than 60 seconds
 - occurring several times a day
- Therefore, the researchers used the raw data to investigate volcanic activities
 - the samples must be accurately time stamped to allow comparisons between correlated measurements

Volcán Tungurahua

- · The sensor architecture consisted of
 - an 8dBi 2.4GHz external omnidirectional antenna
 - a seismometer
 - a microphone
 - a custom hardware interface board
- Operating environment TinyOS
- Fash memory for buffering raw data
- Conclusion
 - WSNs are *suitable* for capturing *triggered events*
 - WSNs are *inadequate* for capturing complete waveforms *for a long period of time*

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Underground Mining

Motivation:

- one of the most dangerous work environments in the world
- incident of August 3, 2007 at the Crandall Canyon mine, Utah, USA
 - six miners were trapped inside the coal mine
 - their precise location was not known
 - the owners of the mine claimed a natural earthquake was the cause while scientists suspect the mine operations caused seismic spikes
 - a *costly* and irksome *rescue* attempt went underway
 - 6.4 cm and 26 cm holes into the mine cavity where drilled, through which
 - an omnidirectional *microphone* and a *video camera* were lowered down
 An *air sample* was taken (20% O₂; little CO₂; no CH₄)

57

Underground Mining

- This evidence caused a mixed anticipation
 - if the miners were alive, the amount of $O_2\,was$ sufficient enough to sustain life for some additional days
 - the absence of methane gave hope that there would be no immediate danger of explosion
 - however, the absence of CO₂ and the evidence from the camera and the microphone undermined the expectation of finding the lost persons alive
- More than six labor-intensive days were required to collect the above evidence
- Unfortunately, the rescue mission had to be suspended
 additional seismic shift in the mountain this fact strengthened the proposition that man-made causes produced the first incident
- Three rescuers were killed and several were injured

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Sources of accidents

- Seismic shifts not the only danger
- Explosions sparked by methane gas and coal-dusts
 - methane from coalification process
 - inadequate ventilation
 - methane from fallen coal
 - methane from the mining faces
 - methane from the walls and ceilings of coal and rock roadways
 - methane from gob of coal mine
- High density coal dust → CO can not disperse into the air → poisonous gas

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

The Sensing Tasks

• Four tasks:

- locate individuals
- locate collapsed holes
- measure and forecast seismic shifts
- measure the concentration of gases
- Challenges (extreme hostile environment for radio communication)
 - turns and twists of underground tunnels → impossible to maintain a line-of-sight communication link → signals being highly reflected, refracted, and scattered
 - high percentage of humidity → signal absorption and attenuation is extremely high