
1!

Chapter 4: Operating Systems

2!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

3!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Operating Systems
  An operating System is!

  a thin software layer!
  resides between the hardware and the application layer!
  provides basic programming abstractions to application

developers!

  Its main task is to enable applications to interact with
hardware resources!

2!

4!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Operating Systems	
  Operating systems are classified as: single-task/

multitasking and single-user/multiuser operating systems!
  multi-tasking OS - the overhead of concurrent processing

because of the limited resources!
  single task OS - tasks should have a short duration!

  The choice of a particular OS depends on several
factors; typically functional and non-functional aspects!

5!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

6!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

 Data Types 	
  Interactions between the different subsystems take place

through:!
  well-formulated protocols!
  data types!

  Complex data types have strong expression power but
consume resources - struct and enum!

  Simple data types are resource efficient but have limited
expression capability - C programming language!

3!

7!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Scheduling	
  Two scheduling mechanisms: !

  queuing-based scheduling !
  FIFO - the simplest and has minimum system overhead, but treats

tasks unfairly!
  sorted queue - e.g., shortest job first (SJF) - incurs system overhead

(to estimate execution duration)!

  round-robin scheduling!
  a time sharing scheduling technique!
  several tasks can be processed concurrently!

8!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Scheduling	
  Regardless of how tasks are executed, a scheduler can

be either!
  a non-preemptive scheduler - a task is executed to the end, may

not be interrupted by another task!
  or preemptive scheduler - a task of higher priority may interrupt

a task of low priority�

9!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Stacks & System Calls	
  Stacks!

  a data structure that temporarily stores data objects in memory
by piling one upon another!

  objects are accessed using last-in-first-out (LIFO)!
  System Calls!

  decouple the concern of accessing hardware resources from
implementation details!

  whenever users wish to access a hardware resource, they
invoke these operations without the need to concern themselves
how the hardware is accessed!

4!

10!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Handling Interrupts	
  An interrupt is an asynchronous signal generated by !

  a hardware device!
  several system events!
  OS itself!

  An interrupt causes:!
  the processor to interrupt executing the present instruction!
  to call for an appropriate interrupt handler!

  Interrupt signals can have different priority levels, a high
priority interrupt can interrupt a low level interrupt!

  Interrupt mask: let programs choose whether or not they
wish to be interrupted	

11!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Multi-threading	
  A thread is the path taken by a processor or a program

during its execution!
  Multi-threading - a task is divided into several logical

pieces!
  scheduled independent from each other!
  executed concurrently!

  Two advantages of a multi-threaded OS:!
1.  tasks do not block other tasks!
2.  short-duration tasks can be executed along with long-duration

tasks�

12!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Multi-threading	
  Threads cannot be created endlessly !

  the creation of threads slows down the processor!
  no sufficient resources to divide!

  The OS can keep the number of threads to a
manageable size using a thread pool!

5!

13!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Thread-based vs. Event-based Programming	
  Decision whether to use threads or events programming:!

  need for separate stacks!
  need to estimate maximum size for saving context information!

  Thread-based programs use multiple threads of control
within:!
  a single program !
  a single address space!

14!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Thread-based vs. Event-based Programming	
  Advantage:!

  a thread blocked can be suspended while other tasks are
executed in different threads!

  Disadvantages:!
  must carefully protect shared data structures with locks!
  use condition variables to coordinate the execution of threads�

15!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Thread-based vs. Event-based Programming	
  In event-based programming: use events and event

handlers!
  event-handlers register with the OS scheduler to be notified

when a named event occurs!
  a loop function: !

  polls for events!
  calls the appropriate event-handlers when events occur!

  An event is processed to completion!
  unless its handler reaches at a blocking operation (callback and

returns control to the scheduler)!

6!

16!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Memory Allocation	
  The memory unit is a precious resource!
  Reading and writing to memory is costly !
  How and for how long a memory is allocated for a piece of program

determines the speed of task execution!

17!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Memory Allocation	
  Memory can be allocated to a program:!

  statically - a frugal approach, but the requirement of memory
must be known in advance!
  memory is used efficiently!
  runtime adaptation is not allowed!

  dynamically - the requirement of memory is not known in
advance (on a transient basis)!
  enables flexibility in programming!
  but produces a considerable management overhead!

18!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

7!

19!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Separation of Concern	
  In general, separation between the operating system and

the applications layer!
  The operation systems can provide:!

  a number of lightweight modules - “wired” together, or!
  an indivisible system kernel + a set of library components for

building an application, or!
  a kernel + a set of reconfigurable low-level services!

  Separation of concern enables:!
  flexible and efficient reprogramming and reconfiguration!

20!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Portability	
  Ideally, operating systems should be able to co-exist and

collaborate with each other!
  However, existing operating systems do not provide this

type of support!
  In order to accommodate unforeseen requirements,

operating systems should be portable and extensible	

21!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

System Overhead	
  An operating system executes program code - requires

its own share of resources!
  The resources consumed by the OS are the systemʼs

overhead, it depends on!
  the size of the operating system !
  the type of services that the OS provides to the higher-level

services and applications!

8!

22!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

System Overhead	
  The resources of wireless sensor nodes have to be

shared by programs that carry out:!
  sensing!
  data aggregation!
  self-organization!
  network management!
  network communication�

23!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

 Dynamic Reprogramming	

  Once a wireless sensor network is deployed, it may be
necessary to reprogram some part of the application or
the operating system for the following reasons:!
1.  the network may not perform optimally!
2.  both the application requirements and the networkʼs operating

environment can change over time!
3.  may be necessary to detect and fix bugs�

24!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	

  Manual replacement may not be feasible - develop an
operating system to provide dynamic reprogramming
support, which depends on!
  clear separation between the application and the OS!
  the OS can receive software updates and assemble and store it in

memory!
  OS should make sure that this is indeed an updated version!
  OS can remove the piece of software that should be updated and install

and configure the new version!
  all these consume resources and may cause their own bugs!

9!

25!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	
  Software reprogramming (update) requires robust code

dissemination protocols:!
  splitting and compressing the code!
  ensuring code consistency and version controlling!
  providing a robust dissemination strategy to deliver the code

over a wireless link�

26!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

27!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyOS (Gay et al. 2007)	
  TinyOS is the most widely used, richly documented, and

tool-assisted runtime environment in WSN!
  static memory allocation !
  event-based system!

  TinyOSʼs architecture consists of!
  a scheduler !
  a set of components, which are classified into!

  configuration components - "wiring" (how models are connected
with each other) !

  modules - the basic building blocks of a TinyOS program!

10!

28!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyOS (Gay et al. 2007)	
  A component is made up of !

  a frame!
  command handlers !
  event handlers!
  a set of non-preemptive tasks!

  A component is similar to an object in object-based
programming languages:!
  it encapsulates state and interacts through well-defined

interfaces!
  an interface that can define commands, event handlers, and

tasks�

29!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyOS (Gay et al. 2007)	

Figure 4.1 Logical distinction between low-level and high-level components (Hill et al. 2000)	

30!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyOS (Gay et al. 2007)	
  Components are structured hierarchically and

communicate with each other through commands and
events:!
  higher-level components issue commands to lower-level

components!
  lower-level components signal events to higher-level

components!

  In Figure 4.1, two components at the highest level
communicate asynchronously through active messages!
  routing component - establishing and maintaining the network!
  sensor application - responsible for sensing and processing	

11!

31!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

TinyOS (Gay et al. 2007)	
  The logical structure of components and component

configurations	

Figure 4.2 !
A TinyOS component providing an interface	

In Figure 4.2, Component A
declares its service by
providing interface C,
which in turn provides
command D1 and signals
event D2. 	

Figure 4.3 !
A TinyOS components that uses an interface!

Figure 4.4 !
A TinyOS configuration that wires an interface

provider and an interface user!

In Figure 4.3, Component B
expresses interest in
interface C by declaring a
call to command D1 and
by providing an event
handler to process event
D2.!

In Figure 4.4, a binding
between Component A
and Component B is
established through the
Configuration E.	

32!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Tasks, Commands and Events	
  The fundamental building blocks of a TinyOS runtime

environment: tasks, commands, and events!
  enabling effective communication between the components of a

single frame!

  Tasks :!
  monolithic processes - should execute to completion - they

cannot be preempted by other tasks, though they can be
interrupted by events!

  possible to allocate a single stack to store context information!
  call lower level commands; signal higher level events; and post

(schedule) other tasks!
  scheduled based on FIFO principle (in TinyOS)�

33!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Tasks, Commands and Events	
  Commands:!

  non-blocking requests made by higher-level components to
lower-level components!

  split-phase operation: !
  a function call returns immediately!
  the called function notifies the caller when the task is completed!

  Events: !
  events are processed by the event handler!
  event handlers are called when hardware events occur!
  an event handler may react to the occurrence of an event in

different ways!
  deposit information into its frame, post tasks, signal higher level

events, or call lower level commands	

12!

34!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

35!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

SOS (Han et al. 2005)	
  The SOS operating system (Han et al. 2005)!

  establishes a balance between flexibility and resource efficiency!
  supports runtime reconfiguration and reprogramming!

  The SOS operating system consists of:!
  a kernel :!

  provides interfaces to the underlying hardware!
  provides priority-based scheduling mechanism!
  supports dynamic memory allocation!

  a set of modules – can be loaded and unloaded - a position
independent binary!
  enables SOS to dynamically link modules with each other!

36!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Interaction	
  Interaction with a module through:!

1.  messages (asynchronous communication)!
  a message that originates from module A to module B!

  the message goes through the scheduler!
  the kernel calls the appropriate message handler in module B and passes the

message to it!

2.  direct calls to registered functions (synchronous communication)!
  requires modules to register their public functions at the kernel - all

modules can subscribe to these functions !
  the kernel creates a function control block (FCB) to store key information about

the function!
  this information is used to:!

  handle function subscription!
  support dynamic memory management!

  support runtime module update (replacement)	

13!

37!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Interaction	

Figure 4.5 illustrates the two basic types of interactions between modules	

  Interaction through a function call is faster than message-based communication	

38!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	
  Five basic features enable SOS to support dynamic

reprogramming!
  modules are position independent binaries!

  they use relative addresses rather than absolute addresses ----
they are re-locatable!

  every SOS module implements two types of handlers – the init
and final message handlers!
  the init message handler - to set the moduleʼs initial state!
  the final message handler - to release all resources the module

owns and to enable the module to exit the system gracefully!
  after the final message, the kernel performs garbage collection!

39!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming
  SOS uses a linker script to place the init handler of a module at a

known offset in the binary!
  enables easy linking during module insertion!

  SOS keeps the state of a module outside of it!
  enables the newly inserted module to inherit the state information of the

module it replaces!
  Whenever a module is inserted, SOS generates and keeps

metadata that contains information: !
  the ID of the module !
  the absolute address of the init handler !
  a pointer to the dynamic memory holding the module state�

14!

40!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	
  In SOS, dynamic module replacement (update) takes

place in three steps:!
1.  a code distribution protocol advertises the new module in the

network!
2.  the protocol proceeds with downloading the module and

examines the metadata !
  the metadata contains the size of the memory required to store the

local state of the module!
  if a node does not have sufficient RAM, module insertion is

immediately aborted!

3.  if everything is correct, module insertion takes place and the
kernel invokes the handler by scheduling an init message for the
module�

41!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

42!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Contiki (Dunkels et al. 2004) 	
  Contiki is a hybrid operating system!

  an event-driven kernel but multi-threading with a dynamic linking
strategy!

  separate the kernel from processes!
  communication of services through the kernel by posting events!
  the kernel does not provide hardware abstraction!
  device drivers and applications communicate directly with the

hardware!
  the kernel is easy to reprogram and it is easy to replace services�

15!

43!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Contiki (Dunkels et al. 2004)	
  For each SOS service: !

  it manages its own state in a private memory !
  the kernel keeps a pointer to the process state!
  it shares with other services the same address space!
  it implements an event handler and an optional poll handler�

44!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Contiki (Dunkels et al. 2004)	

Figure 4.6 The Contiki operating system: the system programs are partitioned into core services and loaded programs	

45!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Contiki (Dunkels et al. 2004)	
  Figure 4.6 illustrates Contikiʼs memory assignment in

ROM and RAM!
  Basic assignment:!

  dispatch events !
  synchronous events!
  asynchronous events!

  periodically call polling handlers!
  the status of hardware components is sampled periodically	

16!

46!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Service Structure	

Figure 4.7 A Contiki service interaction architecture (Dunkels et al. 2004)	

47!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Service Structure	
  Figure 4.7 illustrates how application programs interact

with Contiki services!
  Contiki OS supports!

  dynamic loading !
  reconfiguration of services!

  This is achieved by defining!
  services!
  service interfaces!
  service stubs!
  service layers!

48!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

17!

49!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

LiteOS (Cao et al. 2008) 	

  LiteOS is a thread-based operating system and supports
multiple applications!
  based on the principle of clean separation between the OS and

the applications!
  does not provide components or modules that should be “wired”

together!
  provides several system calls!
  provides a shell - isolates the system calls from a user!
  provides a hierarchical file management system!
  provides a dynamic reprogramming technique!

50!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

LiteOS (Cao et al. 2008)	

  LiteOS is modeled as a distributed file system	

Figure 4.8 The LiteOS operating system architecture (Cao et al. 2008)!

51!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Shell and System Calls	
  The shell provides: !

  a mounting mechanism to a wireless node which is one-hop away
from it!
  a distributed and hierarchical file system!
  a user can access the resources of a named node!

  a large number of Linux commands!
  file commands - move, copy and, delete files and directories!
  process commands - manage threads!
  debugging commands - set up a debugging environment and debug

code!
  environment commands!

  user - managing the environment of OS!
  manual - displaying interaction history and providing command reference!

  device commands - provide direct access to hardware devices	

18!

52!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

LiteFS	

Figure 4.9 The file system structure of LiteFS (Cao et al. 2008)!

53!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	
  The LiteFS is a distributed file system!
  A user can!

  access the entire sensor network !
  program and manage individual nodes!

  LiteOS supports the dynamic replacement and
reprogramming of user applications!
  if the original source code is available to the OS!

  recompiled with a new memory setting!
  the old version will be redirected!

54!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Dynamic Reprogramming	
  If the original source code is not available to the OS!

  use a differential patching mechanism to replace an older version binary!
  the start address (S) of the binary executable in the flash memory!
  the start address of allocated memory in RAM (M)!
  the stack top (T)!
  T - M = the memory space allocated for the program code!

  but the parameters are obtained empirically and require knowledge of
the node architecture - limits the usefulness of the patching scheme�

19!

55!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Outline
  Functional Aspects!

  Data Types!
  Scheduling!
  Stacks!
  System Calls!
  Handling Interrupts!
  Multithreading!
  Thread-based vs. Event-based Programming!
  Memory Allocation!

  Non-Functional Aspects!
  Separation of Concern!
  System Overhead!
  Portability!
  Dynamic Reprogramming!

  Prototypes!
  TinyOS!
  SOS!
  Contiki!
  LiteOS!

  Evaluation!

56!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Evaluation	

Table 4.1 Comparison of functional aspects of existing operating systems	

57!Fundamentals of Wireless Sensor Networks: Theory and Practice
Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Evaluation	

Table 4.2 Comparison of nonfunctional aspects of existing operating systems	

