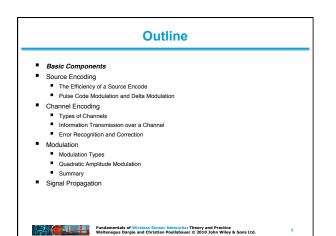


Physical Layer

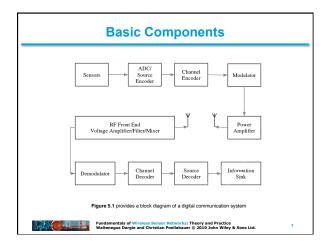
- One of the desirable aspects of WSNs is their ability to communicate over a wireless link, so
 - mobile applications can be supported

operation


- flexible deployment of nodes is possible
- the nodes can be placed in areas that are inaccessible to wired nodes
- Once the deployment is carried out, it is possible to
 - rearrange node placement optimal coverage and connectivity
 the rearrangement can be made without disrupting the normal

3

Physical Layer


- Some formidable *challenges*:
 - limited bandwidth
 - limited transmission range
 - poor packet delivery performance because of interference, attenuation, and multi-path scattering
- therefore, it is vital to understand their properties and some of the mitigation strategies
- this chapter provides a fundamental introduction to *point*to-point wireless digital communication

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Basic Components

- The *basic components* of a digital communication system:
 - transmitter
 - channel
 - receiver
- Here, we are interested in *short range communication* because nodes are placed close to each other

Basic Components

- The communication source represents one or more sensors and produces a message signal - an analog signal
 - the signal is a *baseband* signal having dominant frequency components *near zero*
 - the message signal has to be converted to a discrete signal (discrete both in time and amplitude)
- The conversion requires sampling the signal at least at <u>Nyquist rate</u> - no information will be lost
 - the Nyquist rate sets a lower bound on the sampling frequency
 - hence, the minimum sampling rate should be twice the
 - bandwidth of the signal

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Basic Components

- Source encoding: the discrete signal is converted to a binary stream after sampling
- An efficient source-coding technique can satisfy the channel's bandwidth and signal power requirements
 by defining a probability model of the information source
 - by defining a probability induction the information source
 channel encoding make the transmitted signal robust to noise and interference
 - transmit symbols from a predetermined codebook
 - transmit redundant symbols
- Modulation the baseband signal is transformed into a bandpass signal
 - main reason is to transmit and receive signals with short
 - antennas

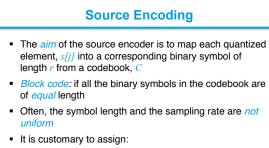
Basic Components

- Finally, the modulated *signal* has to *be amplified* and the *electrical energy* is *converted into electromagnetic energy* by the transmitter's antenna
- The signal is *propagated* over a wireless link to the desired destination
- The receiver block carries out the reverse process to retrieve the message signal from the electromagnetic waves
 - the receiver antenna *induces a voltage* that is similar to the modulated signal

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargle and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

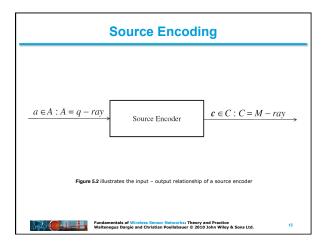
Basic Components

- The magnitude and shape of the signal are changed because of losses and interferences
- The signal has to pass through a series of *amplification* and *filtering processes*
- It is then transformed back to a baseband signal through the process of *demodulation* and *detection*
- Finally, the baseband signal undergoes a pulse-shaping process and two stages of decoding (channel and source)
 - extract the sequence of symbols the original analog signal (the message)

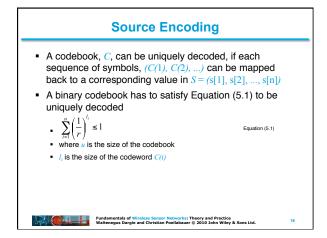

11

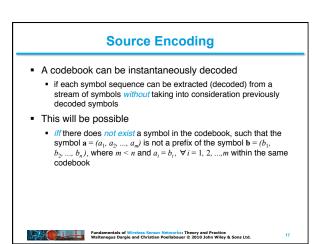
Encoding Efficiency of a Source Encode Code Modulation and Delta Modulation	
Code Modulation and Delta Modulation	
Encoding	
s of Channels	
nation Transmission over a Channel	
n	
lation Types	
ratic Amplitude Modulation	
opagation	
	aution Transmission over a Channel Recognition and Correction on Julation Types Iratic Amplitude Modulation nary opagation

Source Encoding

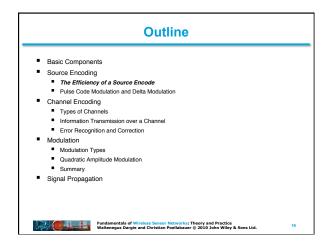

- A source encoder transforms an *analog signal* into a *digital sequence*
- The process consists of: sampling, quantizing, encoding
 Suppose a sensor produces an analog signal s(t)
 - s(t) will be sampled and quantized by the analog-to-digital
 - converter (ADC) that has a resolution of *Q* distinct values
 as a result, a sequence of samples, *S* = (*s*[1], *s*[2], ..., *s*[*n*]) are
 - produced
 the difference between the sampled s[j] and its corresponding analog value at time t_j is the *quantization error*
 - as the signal varies over time, the quantization error also varies and can be modeled as a random variable with a probability density function, $P_s(t)$

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.




- short-sized symbols and high sampling rates to the most probable sample values
- *long-sized symbols* and *low* sampling rates to less probable sample values

14



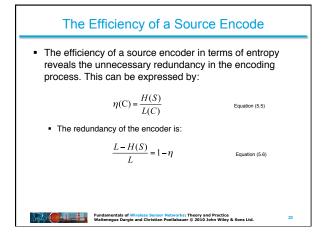
	C^1	C ²	C ³	C^4	C ⁵	C ⁶
S1	0	0	0	0	0	0
S2	10	01	100	10	01	10
S ₃	00	10	110	110	011	110
S_4	01	11	11	1110	111	111
Block code	No	Yes	No	No	No	No
Uniquely decoded	No	Yes	No	Yes	Yes	Yes
$\sum_{i=1}^{n} \left(\frac{1}{2}\right)^{i_i}$	$1\frac{1}{4}$	1	1	$\frac{15}{16} < 1$	1	1
Instantly decoded	No	Yes (block code)	No	Yes (comma code)	No	Yes

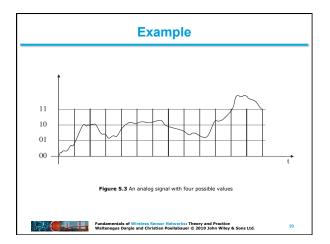
The Efficiency of a Source Encoder

- Quantity that expresses the average length
- Sampled analog signal: $L(C) = E[l_i(C)]$
- Suppose the probability of a *q*-ary source
 - i.e., it has q distinct symbols
 - producing the symbol s_i is P_i and the symbol C_i in a codebook is used to encode s_i
 - the expected length of the codebook is given by:

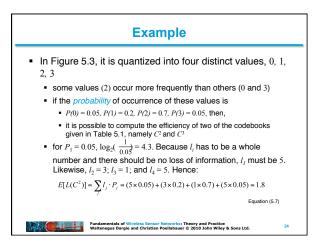
 $L(C) = \sum_{i=1}^{q} P_i \, l_i(C)$

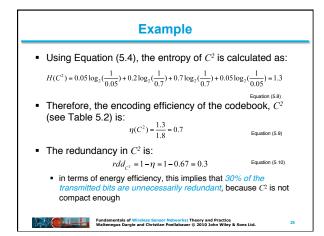
Equation (5.2)

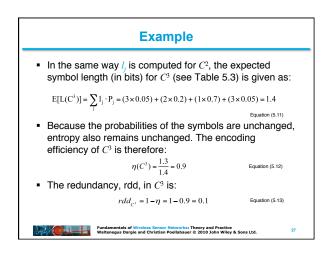

20

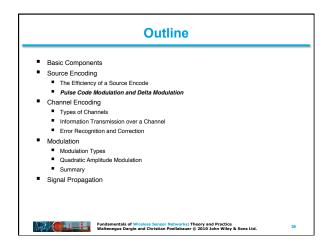

21

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.


The Efficiency of a Source Encode


- To express efficiency in terms of the information entropy or *Shannon's entropy*
 - defined as the minimum message length necessary to communicate information
 - related to the uncertainty associated with the information
 - if the symbol s_i can be expressed by a binary symbol of n bits, the information content of s_i is:
 - $I(s_i) = -\log_2 P_i = \log_2 \frac{1}{P_i}$
 - the entropy (in bits) of a *q*-ary memoryless source encoder is expressed as:
 - $H_r(A) = E[l_r(s_i)] = \sum_{i=1}^{q} P(s_i) \cdot l_r(s_i) = \sum_{i=1}^{q} P(s_i) \cdot \log_2 \frac{1}{P(s_i)}$ Equation (5.4)

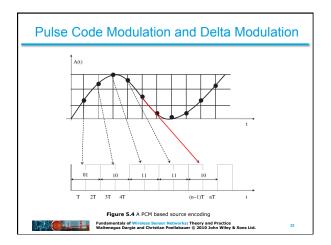




		ample		
j	aj	Pj	lj -	
1	00	0.05	5	
2	01	0.2	3	
	10	0.7	1	
3	10	0.7		
4	11	0.05 f the compactnes	5	
4	11	0.05	5	
4	11 5.2 Description o	0.05 f the compactnes	5 s of C ²	
4 Table ! j	11 5.2 Description o	0.05 f the compactnes P _j	5 s of C ²	
4 Table ! j 1	11 5.2 Description o <i>a_j</i> 100	0.05 f the compactnes P _j 0.05	5 s of C ²	

Pulse Code Modulation and Delta Modulation

- PCM and DM are the two predominantly employed source encoding techniques
- In digital pulse code modulation
 - the signal is quantized first
 - each sample is represented by a binary word from a finite set of words


29

- The resolution of a PCM technique and the source encoder bit rate are determined by
 - the size of the individual words
 - · the number of words in the set

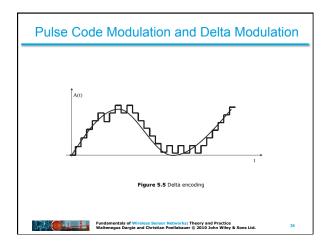
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Pulse Code Modulation and Delta Modulation

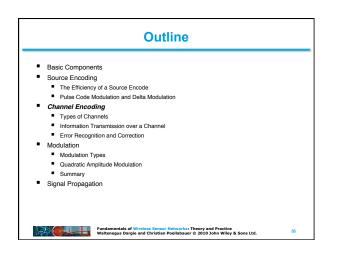
- In PCM, information is conveyed in the presence or absence of *pulses*
 - greatly enhances the transmission and regeneration of *binary* words
 - the associated cost with this form of source encoding is
 the quantization error, the energy and bandwidth required to transmit the multiple bits for each sampled output
 - Figure 5.4 illustrates a PCM technique that uses two bits to encode a single sample
 - · four distinct levels are permissible during sampling

Pulse Code Modulation and Delta Modulation

- Delta modulation is a digital pulse modulation technique
 it has found widespread acceptance in low bit rate digital systems
 - it is a *differential* encoder and transmits bits of information
 - the information describes the difference between successive signal values, as opposed to the actual values of a time-series sequence
 - the difference signal, $V_d(t)$, is produced by first estimating the signal's magnitude based on previous samples $(V_i(t_0))$ and comparing this value with the actual input signal, $V_{in}(t_0)$

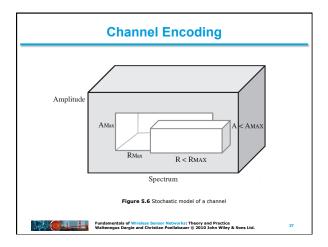

32

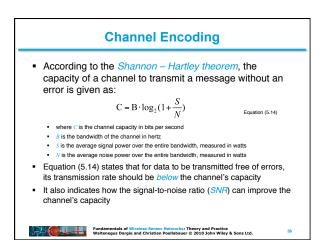
33


Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Pulse Code Modulation and Delta Modulation

- The polarity of the difference value indicates the polarity of the pulse transmitted
- The difference signal is a *measure* of the *slope of the signal*
 - first, *sampling* the analog signal
 - then, varying the amplitude, width, or the position of the digital signal in accordance with the amplitude of the sampled signal
- Figure 5.5 illustrates delta modulation




Channel Encoding

- The main purpose is
 - to produce a sequence of data that is *robust to noise*
 - to provide error detection
 - to forward error correction mechanisms
- The physical channel sets *limits* to
 - the magnitude
 - the rate of signal transmission
- Figure 5.6 illustrates these restrictions

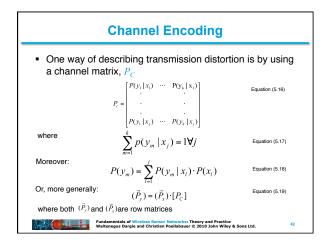
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Channel Encoding

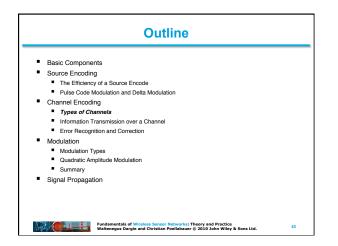
- The equation reveals *two* independent *reasons* why errors can be introduced during transmission:
 - information will be lost if the message is transmitted at a rate higher than the channel's capacity - *equivocation* (subtractive error)
 - 2. information will be lost because of noise, which adds irrelevant information into the signal

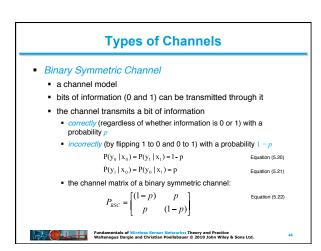
39

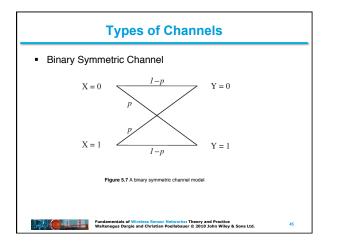
 A stochastic model of the channel helps to quantify the impact of these two sources of errors

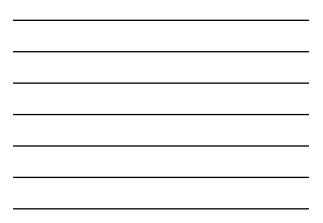

- Suppose an input sequence of data x_l that can have j distinct values, x_l ∈ X = (x₁, x₂, ..., x_j), is transmitted through a physical channel
- Let $P(x_i)$ denote $P(X = x_i)$
- The channel's output can be decoded with a k-valued alphabet to produce y_m ∈ Y = (y₁, y₂, ..., y_k)
- Let $P(y_m)$ denotes $P(Y = y_m)$
- At time t_i, the channel generates an output symbol y_i for an input symbol x_i

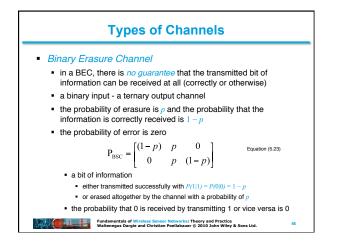
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.


Channel Encoding


where,
$$l = 1, 2, ..., i$$
 and $m = 1, 2, ..., k$


- In the subsequent analysis of the stochastic characteristic of the channel, the following assumptions hold:
 - the channel is discrete, namely, X and Y have finite sets of symbols
 - the channel is stationary, namely, $P(y_m|x_p)$, are independent of the time instance, I
 - the channel is memoryless, namely, $P(\mathbf{y}_m|\mathbf{x}_l)$, are independent of previous inputs and outputs





Types of Channels

1-p

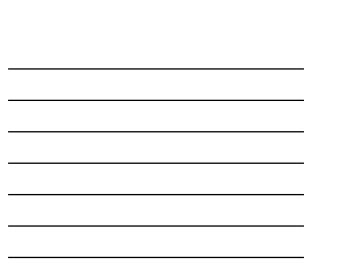
1-p

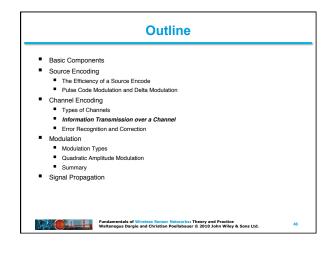
Figure 5.8 A stochastic model of a binary erasure channel

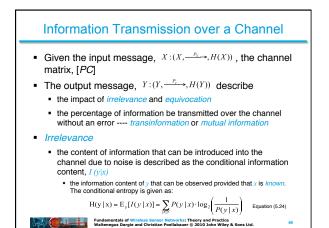
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

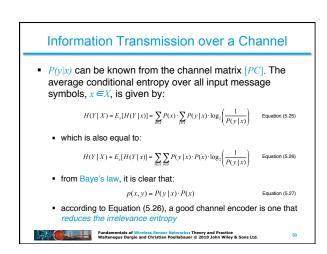
Y = 0

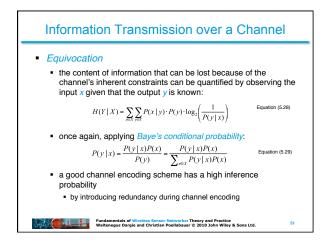
Y = e

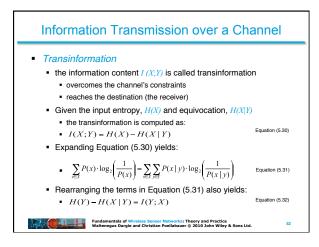

Y = 1


47


Binary Erasure Channel

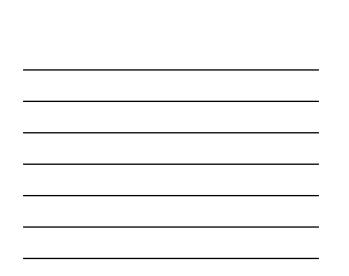

X = 0


X = y

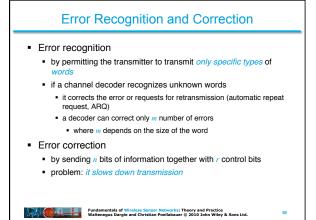


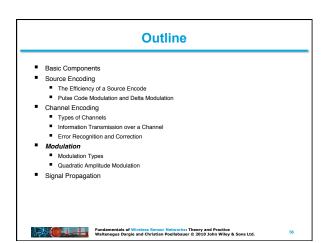
Information Transmission over a Channel

I(E, D)

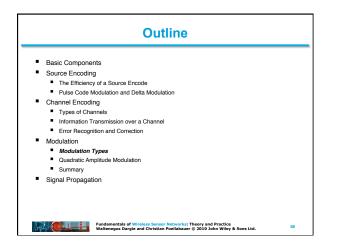

I(D)

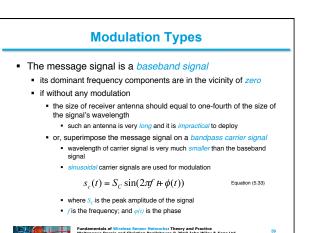

Ν


I(E)


Е

Summarize:

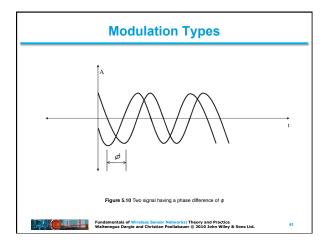


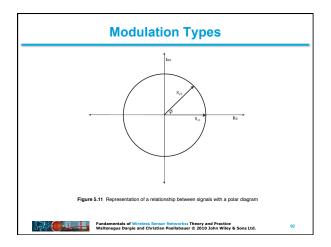


Modulation

- Modulation is a process where
 - characteristics (amplitude, frequency, and phase) of a carrier signal are modified according to the message (a baseband) signal
- Modulation has several advantages:
 - the message signal will become resilient to noise
 - the channel's spectrum can be used efficiently
 - signal detection will be simple

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.




Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

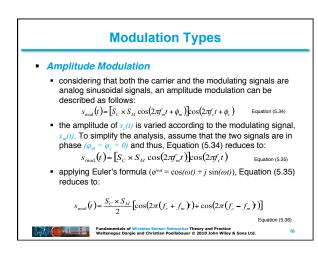
Modulation Types

- A radio frequency signal can also be described in terms of its wavelength
 - a function of the propagation speed and the frequency · Figure 5.10 shows two sinusoidal signals that have the same frequency and amplitude, but are also out of phase by φ degrees
- Figure 5.11 shows the how to use *polar presentation* to describe the relationship between two sinusoidal signals that have the same frequency

• A message signal, $s_m(t)$, can change

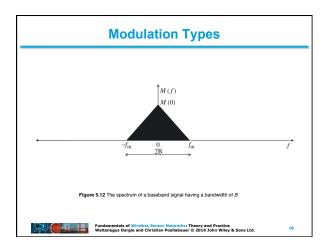
- either the amplitude, the phase or frequency of $s_c(t)$
 - if s_m(t) changes the *amplitude* of s_c(t), the modulation is known as amplitude modulation (*AM*)
 if (a) changes the formulation (*AM*)
 - if $s_{\rm m}(t)$ changes the <code>frequency</code> of $s_{\rm c}(t),$ the modulation is known as frequency modulation (FM)
 - if $s_m(i)$ changes the *phase* of $s_c(i)$, the modulation is known as phase modulation

63

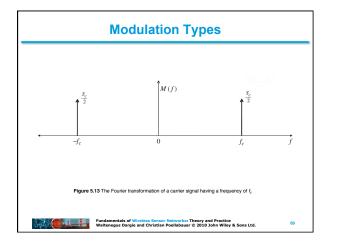

- $s_m(t)$ can be a digital (binary) signal
 - amplitude shift keying (ASK)
 - frequency shift keying (FSK)
 - phase shift keying (PSK)

- A modulation process can further be classified into
 - coherent or non-coherent
 - binary or q-ary
 - power-efficient or spectrum-efficient
- In a coherent modulation technique
 - a carrier signal of the same frequency (and ideally, of the same phase) is required to demodulate (detect) the received signal
- In a non-coherent modulation technique
 - no additional carrier signal is required to demodulate the received signal

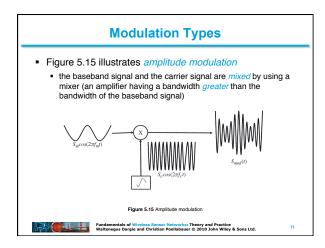
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

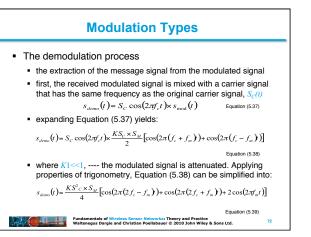

Modulation Types

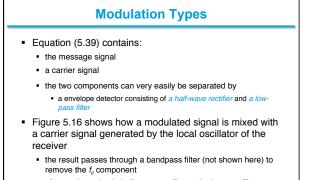
- In a binary modulation
 - the modulating (message) signal is binary
- In a q-ary modulation
 - the modulating signal can have *m* discrete values
- In a power-efficient modulation technique
 the aim is to optimize the *power* of the modulated signal
- In a spectrum-efficient modulation technique
 - the aim is to optimize the *bandwidth* of the modulated signal

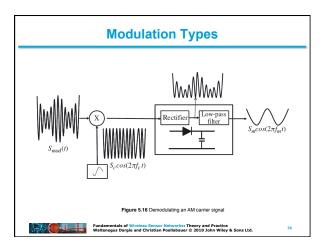



- In reality, the message signal is a baseband signal
 it has a *bandwidth* of *B*
 - in *B* the amplitude and frequency change as functions of time
- The *Fourier transformation* of such a baseband signal resembles the one displayed in Figure 5.12
- The Fourier transformation of the carrier signal is displayed in Figure 5.13
- Hence, the spectrum of the amplitude modulated signal based on Figure 5.12 and Figure 5.13 looks like the one displayed in Figure 5.14.









 afterwards, a simple half-wave rectifier and a lowpass filter are used to retrieve the message (baseband) signal

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Modulation Types

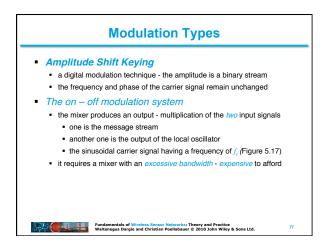
Frequency and Phase Modulation

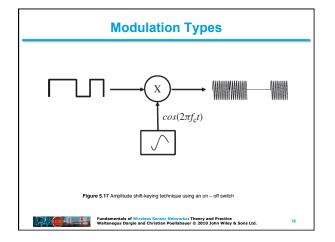
- the amplitude of the carrier signal, s_c(t), remains intact
- but its frequency changes according to the message signal, $s_m(t)$
- here, it is essential to restrict the amplitude of the modulating signal such that $|s_m(t)| \leq 1$
- hence, the modulated signal is described as follows:

$$S_{FM}(t) = S_C \cos\left(2\pi \int_0^t f(\tau) d\tau\right) \qquad \text{Equation (5.40)}$$

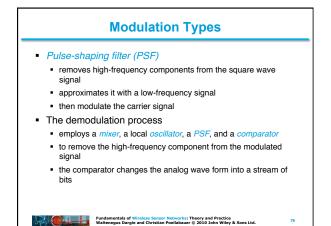
75

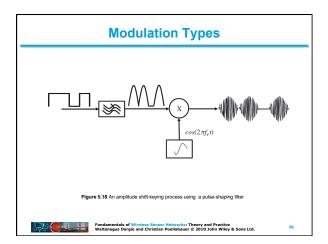
- where $\int_0^t f(\tau) d\tau$ is the instantaneous variation of the local oscillator's frequency

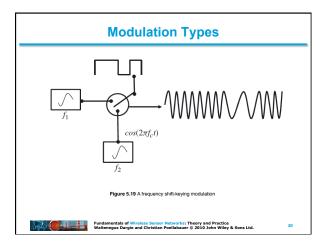

 Expressing this frequency variation as a function of the modulating signal yields:

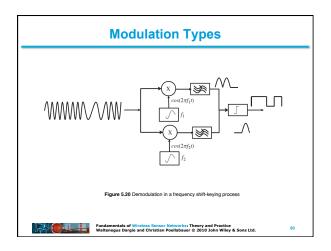

 $s_{FM}(t) = S_C \cos\left(2\pi \int_0^t \left[f_c + f_\delta s_m(\tau)\right] d\tau\right) \qquad \text{Equation (5.41)}$

where f_δ is the maximum frequency deviation of the carrier frequency, f_c
 Rearranging the terms in Equation (5.41) yields:


$$s_{FM}(t) = S_C \cos\left(2\pi f_c t + 2\pi f_{\delta} \int_0^t s_m(\tau) d\tau\right) \qquad \text{Equation (5.42)}$$

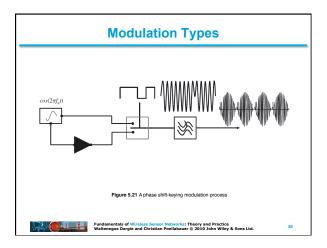

• In phase modulation, the phase of the carrier changes in accordance with the message signal

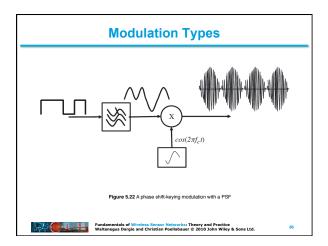



Frequency Shift Keying

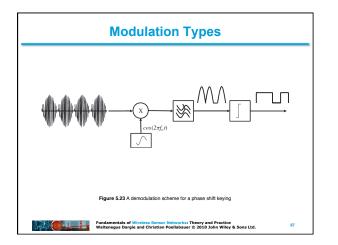
- the *frequency* of a carrier signal *changes* in accordance with the message bit stream *between two values*
 - because the message bit stream will have either 0 or 1
- Figure 5.19 demonstrates how a simple switching amplifier and two local oscillators with carrier frequencies f_1 and f_2 can be used in frequency shift-keying modulation
- the switching amplifier is controlled by the message bit stream
- the *demodulation process* requires two local oscillators (with frequency *f*₁ and *f*₂), two PSFs and a comparator (Figure 5.20)

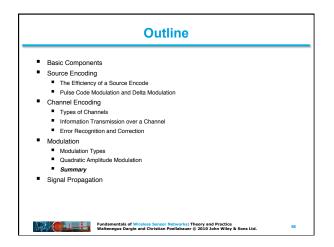
81

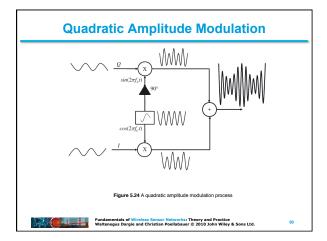



- Phase Shift Keying
 - a carrier signal is changed according to the message bit stream
 make a phase shift of 180° when the bit stream changes from 1
 - to 0 or vice versa (Figure 5.21)
- The modulation process requires
 - a local oscillator, an inverter, a switching amplifier, and a PSF
 - the inverter is responsible for inverting the carrier signal by 180°
 - alternatively, a PSF, a mixer, and a local oscillator (Figure 5.22)
- The demodulation process uses
 - a local oscillator, a mixer, a PSF, and a comparator (Figure 5.23)

84


Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

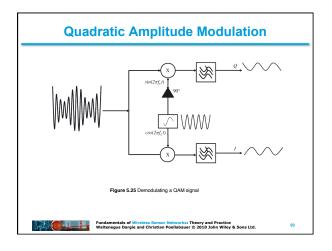




Quadratic Amplitude Modulation

- A single message source is used to modulate a single carrier signal not efficient enough
- Employ *orthogonal signals* to effectively exploit the channel's bandwidth
- In the QAM process
 - two amplitude-modulated, orthogonal carriers are combined as a composite signal
 - achieving *double bandwidth efficiency* compared to the normal amplitude modulation
- QAM is used with *pulse amplitude modulation (PAM)* in digital systems
 - the modulated bit stream is divided into two parallel sub-streams each of which independently modulates the two orthogonal carrier signals
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Quadratic Amplitude Modulation


- The carrier signals have the same frequency, *f_c*, but they are out of phase by 90°
- Since the signals are orthogonal, they *do not interfere* with each other
- One of the carriers is called the *I* carrier (*in-phase signal*) and the other is called the *Q* signal (*quadrature signal*)
 - recall that:
 - $s_{Q}(t) = S_{C} \cos(2\pi f t + 90^{\circ}) = S_{C} \sin(2\pi f t)$ Equation (5.43)
- At the receiver side, the composite modulated signal will be mixed with *two* demodulating signals
 - they are identical in frequency but out of phase with each other by 90 $^{\circ}$

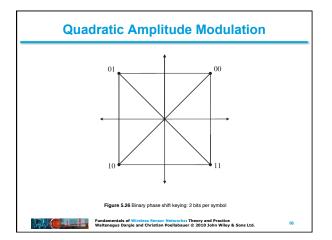
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Quadratic Amplitude Modulation

The demodulation process of a QAM signal (Figure 5.25)
 the composite signal arrives at the receiver

- the input signal
- one has a reference zero phase
- while the other has a 90° phase shift
- The composite input signal is thus split into an in-phase, ${\it I}$, and a quadrature, ${\it Q},$ components
 - they are *independent* and *orthogonal* ---- One can be changed
 - without affecting the other
- Digital modulation is *easy* to accomplish with *I/Q* modulators
 map the data to *constellation points* (a number of discrete points) on the *I/Q* plane

Quadratic Amplitude Modulation

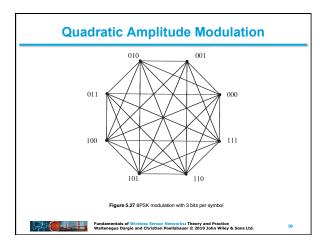

Modulation Efficiency

- the modulation efficiency refers to
 - the number of bits of information that can be conveyed in a single symbol
 - in a QAM, the composite carrier signal contains two orthogonal signals
 - a receiver is sensitive enough to detect the differences between these two signals
 - much information can be conveyed with a single state of the composite carrier signal
 - however, a *tradeoff* between the compactness of the modulated technique and the receiver's complexity

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

Quadratic Amplitude Modulation

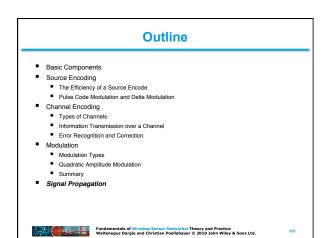
- Bit rate vs. Symbol rate
 - bit rate refers to the frequency of a system's bit stream
 - a symbol rate (baud rate)
 refers to the bit rate divided by the number of bits that can be transmitted with each symbol
 for example, a 10-bit ADC that samples an accelerometer sensor
 - at a rate of 1 KHz has a bit stream of 10 bits multiplied by 1 KHZ samples per second, or 10 kbps
 - quadrature phase shift keying (QPSK) digital modulation
 a phase difference of 90 between the / and Q carrier signals
 - indicates a message of 1 or 0
 - in Figure 5.26, The four states can be represented by two bits: 00, 01, 10, 11. Subsequently, the symbol rate is half of the bit rate
 - for the ADC example, the symbol rate is 5 kbps
- Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.



An eight-state phase shift-keying modulation

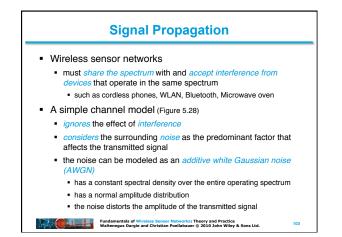
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

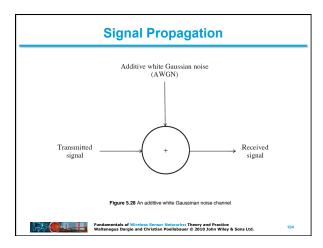
- it can be mapped into *eight distinct symbols* by the demodulator
 the eight symbols can be represented by *3 bits*, the symbol rate
- is one-third of the bit rate
 the 8PSK modulator should be able to discriminate eight different transitions in phase of the composite carrier signal - the efficiency in spectrum is not achieved without a cost


Summary

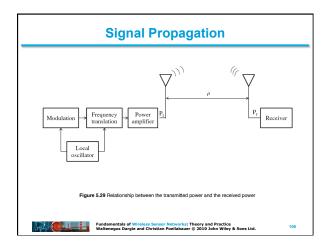
- The choice of a modulation technique depends on
 the design goals of the communication subsystem
- There is a tradeoff between
 - power consumption, spectrum efficiency, and cost
 - a power efficient modulator enables a communication system to reliably transmit information at the lowest practical power cost
 - a spectrally efficient modulator enables a communication subsystem to send as many bits of information as possible within a limited bandwidth
 - power and spectrum efficiency cannot be achieved at the same time

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.


Summary


- For terrestrial links, the concern is *bandwidth efficiency* with low bit-error-rate
 - power efficiency, the receiver's cost or complexity are not prior concerns
- In wireless sensor networks, *power efficiency and* the cost of the transceivers (in large-scale deployments) are prime concern
 - bandwidth is not prior concerns
- Subsequently, the communication subsystems sacrifice bandwidth efficiency to achieve power and cost efficiency

	On the free services and	Assolution
Spectrum	Center frequency	Availability
6.765-6.795MHz	6.780MHz	Subject to local regulations
13.553-13.567MHz	13.560MHz	
26.957-27.283MHz	27.120MHz	
40.66-40.70MHz	40.68MHz	
433.05–434.79MHz	433.92MHz	Europe, Africa, the Middle East west of the Persian Gulf including Iraq, the former Soviet Union and Mongolia
902–928MHz	915MHz	The Americas, Greenland and some of the eastern Pacific Islands
2.400-2.500 GHz	2.450 GHz	
5.725–5.875 GHz	5.800 GHz	
24–24.25 GHz	24.125 GHz	
61–61.5 GHz	61.25 GHz	Subject to local regulations
122–123 GHz	122.5 GHz	Subject to local regulations
244-246 GHz	245 GHz	Subject to local regulations


Signal Propagation

- One can also use *a spread spectrum technique* to distribute the energy of the transmitted signal
 - a wider effective bandwidth can be achieved
- The received power can be improved by *adjusting* a number of *parameters*
 - the relationship between the received power and the transmitted power can be expressed using Figure 5.29
 - suppose the power amplifier outputs a constant transmission power, P_{ρ} to transmit the signal over a distance of ρ • the relationship between the transmitter's antenna gain, g_{r} , and the
 - antenna's effective area, A_i , is expressed as: $A_i = g_i \frac{\lambda^2}{\lambda_i^2}$ Equation (5.44)

$$A_{i} = g_{i} \frac{\pi}{4\pi}$$
 Equation (5.4)
the wavelength of the carrier signal


Fundamentals of <u>Wireless Sensor Networks</u>: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.

where λ is

Signal Propagation At the receiver's side, the transmitted signal will be received and the received power is a function of the distance the path loss index the receiver's antenna gain and effective area A line-of-sight (LOS) communication link the path loss index is 2 A non-LOS communication link ti lies between 2 and 4

Signal Propagation							
 Hence, the propagation loss expressed in dBs is: 							
$a(t)/dB = 20\log\left(\frac{4\pi\rho}{\lambda}\right) - 10\log(g_{_{P}}g_{_{T}})$ Equation (5.4)	8)						
 the term 20log(4πρ/λ) is called the basic transmission loss and is independent of the transmitter and receiver antennas 							
$a(t)/dB = 20\log\left(\frac{4\pi\rho}{\lambda}\right) - 10\log(g,g,t)$							
Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.	109						

Г