

Dig	tal Biomarkers
PROSPECTIVE METHOD	RETROSPECTIVE METHOD
Identify dataset of interest	Extract and clean data
-	-
Identify method of acquisition	Plan and conduct analysis on dataset of interest
-	-
Hypothesize	Conduct hypothesis-driven exploratory analysis
-	-
Collect and analyze data	Identify and confirm relationship(s) of interest
-	
Relationship estab	shed between data and a health-related outcome
Diagnosis	Prognosis Prediction
Computer Sc	nce and Engineering - University of Notre Dame

Case-Control Study

- Generally retrospective.
- Identify groups with or without the condition.
- Look backward in time to find differences in predictor variables that may explain why the cases got the condition and the controls did not.
- Assumption is that differences in exposure histories should explain why the cases have the condition.
- Data collection via direct interview, mailed questionnaire, chart review.

- **Bias**: Deviation of results or inference from truth, or processes leading to such deviations. Any trend in the collection, analysis, interpretation, publication, or review of data that can lead to conclusions that are systematically different from the truth.
- Bias is an error.
- Two types of errors:
 - Random: use of invalid outcome measure that equally misclassifies cases and controls.
 - Systematic: use of invalid measures that misclassify cases in one direction and controls in another.

Computer Science and Engineering - University of Notre Dame

		La	ibels (Anno	tatio	ns)		
,,, H20 奈 ✔Home	2:26 РМ Labelling	৵ 47% 🔲	HI H20 奈 ∢ Home	2:27 PM Labelling	ৰ 47% 💷	nn H20 奈 ✔Home	2:27 РМ Labelling	√ 46% 🔳
kt Mood	Activity	Context	Activity	Context	Mood A	Context	Mood	Activity (
V	Valking 00:19:02 Stop	g	Тар	o to St	art		Happy 00:00:28 Stop	
Sitting	Standing	Walking	Home Store	Work	School	Happy Annoyed	Sad	Angry
Lying	Running	Biking	Store puter Science and	Dining	Gym Jniversity of No	Annoyed tre Dame	Shocked	Stressed

	PPV	NPV
Definition	% that a person with positive test is actually diseased.	% change that a person with negative test is actually disease
Use	Proceed with a patient with positive	Proceed with a patient with
Relation to prevalence	Low prevalence low PPV High prevalence high PPV	High prevalence low NPV Low prevalence High NPV

Statistical Tests						
	Level of Measurement					
Number of groups	Nominal	Ordinal	Interval/Ratio			
1 group	χ^2 test	Kolmogorov-Smirnoff 1 sample test	t-test of sample mean vs. known population value			
2 independent groups	χ^2 test	Mann-Whitney U test	Independent samples t-test			
2 dependent groups	McNemar test	Wilcoxon test	Paired t-test			
>2 independent groups	χ^2 test	Kruskal-Wallis ANOVA	ANOVA			
>2 dependent groups	Cochran Q test	Friedman ANOVA by ranks	Repeated measures ANOVA			

Computer Science and Engineering - University of Notre Dame

Seminar Topic Selection To be done individually ٠ Identify a topic of interest, e.g.,: ٠ - Identify a technology and explore its medical use - Identify a medical challenge and explore how technology is used to address it **Proposal:** - Title of proposed topic - Your name - One paragraph (less than ½ page) describing focus of your chosen topic Find 3-5 relevant publications for your topic ٠ Prepare oral report in class, about 5-7 minutes Prepare written report (up to 3 pages) ٠ Computer Science and Engineering - University of Notre Dame