Challenges
Computer Science and Engineering - University of Notre Dame

Goals of Pervasive (Ubiquitous) Computing

- Invisible technology
- Integration of virtual and physical worlds ("embodied virtuality")
- Encompassing all parts of your life (home, office, commute, entertainment, shopping, medical, ...)
- "Using a computer should be as refreshing as a walk in the woods"
- Make everyday objects "smart"

Smart Objects

- Real world objects are enriched with information processing capabilities
- Embedded processors
 - in everyday objects
 - small, cheap, lightweight
- Communication capability
 - wired or wireless
 - spontaneous networking and interaction
- Sensors and actuators

Smart Objects (cont.)

- Can remember pertinent events
 - They have a memory
- Show context-sensitive behavior
 - They may have sensors
 - Location/situation/context awareness
- Are responsive/proactive
 - Communicate with environment
 - Networked with other smart objects

SMART APPLIANCES

ANOTHER BEER
PREASE, HAL.

ANOTHER BEER
PREASE, HAL.

ANOTHER BEER
PREASE, HAL.

ANOTHER BEER
PREASE
PR

Pervasive Computing Enablers

- Moore's Law of IC Technologies
- Communication Technologies
- Material Technologies
- Sensors/Actuators

First Enabler: Moore's Law

- Processing speed and storage capacity double every 18 months
 - "cheaper, smaller, faster"
- Exponential increase
 - Being "replaced" with other technology, e.g., multiple cores

Generalized Moore's Law

- Most important technology parameters double every 1–3 years:
 - computation cycles
 - memory, magnetic disks
 - bandwidth
- Consequence:
 - scaling down

Second Enabler: Communication

- Wired
 - 1GB, 10GB Ethernet (100GB in development)
 - $\boldsymbol{\mathsf{-}}$ Optical fiber, powerlines, ...
- Wireless
 - mobile phone: GSM, GPRS/EDGE, 3G, 4G
 - wireless LAN (> 10 Mb/s)
 - Bluetooth, Zigbee
- Body area networks, vehicular networks
- Constant connectivity, wired and wireless

Body Area Networks

- Very low current (some nA), some kb/s through the human body
- Possible applications:
 - Car recognize driver
 - Pay when touching the door of a bus
 - Phone configures itself when it is touched

Spontaneous Networking

- Objects in an open, distributed, dynamic world find each other and form a transitory community
 - Devices recognize that they "belong together"

Third Enabler: New Materials

- Whole eras named after materials
 - e.g., "Stone Age", "Iron Age", "Pottery Age", etc.
- Recent: semiconductors, fibers
 - information and communication technologies
- Organic semiconductors
 - change the external appearance of computers
- "Plastic" laser
 - Opto-electronics, flexible displays,...
- Nanocomputing

Smart Paper, Electronic Ink

- Electronic ink
 - micro capsules, white on one side and black on the other
 - oriented by electrical field
- Potentially high contrast, low energy, flexible
- Interactive: writable with magnetic pen

An electronically charged pencil rotates the

Interactive Map

• Foldable and rollable

Smart Clothing

- Conductive textiles and inks
 - print electrically active patterns directly onto fabrics
- Sensors based on fabric
- e.g., monitor pulse, blood pressure, body temperature
- Invisible collar microphones
- Kidswear
 - game console on the sleeve?
 - integrated GPS-driven locators?
 - integrated small cameras (to keep the parents calm)?

Smart Glasses

- "Visual information will be written directly onto our retinas by devices in our eyeglasses and contact lenses"
 - -- Raymond Kurzweil

Fourth Enabler: Sensors/Actuators

- Miniaturized cameras, microphones,...
- Fingerprint sensor
- Radio sensors
- RFID
- Infrared
- Location sensors
 - e.g., GPS
- ...

Example: Radio Sensors

- No external power supply
 - energy from the actuation process
 - piezoelectric and pyroelectric materials transform changes in pressure or temperature into energy

- RF signal is transmitted via an antenna (20 m distance)
- Applications: temperature surveillance, remote control (e.g., wireless light switch),...

RFIDs ("Smart Labels")

- Identify objects from distance
 - small IC with RF-transponder
- Wireless energy supply
 - ~1m
- magnetic field (induction)
- ROM or EEPROM (writeable)
 - − ~100 Byte
- Cost: couple of cents
- consumable and disposable
- · Flexible tags
 - laminated with paper

Putting Them Altogether

- Progress in
 - computing speed
 - communication bandwidth
 - material sciences
 - sensor techniques
 - computer science concepts
 - $\ miniaturization \\$
 - energy and battery
 - display technologies
 - ...

- Enables new applications
- "Post-PC era" business opportunities
- Challenges for computer scientists, e.g., infrastructure

Example Projects

- ETH Zurich The Smart-Its Project
- HP Cooltown project <u>http://www.youtube.com/watch?v=JwbTxkSSGG4</u>
- AT&T Sentient System
- Berkeley's Wireless Sensor Network
- Intel Mote/RFID Project

Idea: Making Objects Smart

The Smart-Its Project

- Vision: make everyday objects as smart, interconnected information artifacts
 - by attaching "Smart-Its"
- Smart labels
 - Atmel microcontroller: (ETH Zurich)4 MIPS, 128 kB flash

Magnifying Glass

- An object as a web link
 - e.g., by displaying a dynamically generated homepage
 - Contents may depend on circumstances, e.g., context and privileges
 - possibly mediated by different name resolvers
 - HP Cooltown project

Smart Environment, Dumb Object

• A context-sensitive cookbook with RFID

Can be Context-Aware

- Properties of the ingredients
 - Check whether there is enough of an ingredient
 - Prefer ingredients with earlier best-before date
- Properties of the kitchen
 - Check whether required tools and spices are available
- Preferences and abilities of the cook
 - Prefers Asian dishes
 - Expert in vegetarian dishes

Berkeley's Wireless Sensor Network MICA Motes, sensors, and TinyOS: If Pin Expansion Connector Antonna If Pin Expansion Connector Antonna If Pin Expansion Connector If Pin Expansion

Ubiquitous information and communication

- Technology has advanced towards ubiquitous computing
 - Global Positioning System (GPS)
 - Radio Frequency Identification (RFID)
- Striking developments
 - The emergence of the Web
 - A global information and service resource
 - Mobile telephony
 - Widespread adoption

Active Bat System

- Conducted at AT&T Lab in Cambridge
- Indoor positioning system
 - Using sensor and badge

4		4	٠	١
	ı	ı		

Lancaster's Guide System

- Provides visitors with tour guide information
 - Based on visitor's interest and movement
- Use
 - Tablet PC
 - WLAN deployed around major attractions

MediaCup Project

- University of Karlsruhe, Germany
- Cups equipped with sensors and wireless communications

Research Challenges

- Scale: one size doesn't not fit all
- Configuration, programming
- Component interaction (self-configuring)
- Contextual sensitivity (what is context? how is it represented?)
- Appropriate management mechanisms
- User interfaces (input/output)
- Knowing when to act, react, interrupt, etc.
- Knowing what is good for people

Research Challenges

- Privacy
 - Empower users to evaluate tradeoff
 - Legislation needed
 - When should computer be visible/invisible?
 - Is it ok to give up this privacy in some settings (healthcare)?
 - Do we give the hackers too much power?
- Security
 - Constant monitoring takes away personal responsibility
 - What happens if I lose my data?

Computer Science and Engineering - University of Notre Dame

Research Challenges

- Concurrency
 - People multitask and rapidly switch task based on external unpredictable environment
 - Systems need to adapt to this opportunistic behavior and change accordingly
- Hard to evaluate ubicom systems
- Economic: one killer app? Or many small successful projects?

Computer Science and Engineering - University of Notre Dame