9/2/20

Graduate Operating Systems
(Storage & File Systems)

Fall 2020

Paper “Sprite LFS”

Does Sprite LFS improve READ or WRITE
performance?

What is the biggest challenge of a log-
structured file system?

Does Sprite LFS focus on large or small files?

How does Sprite LFS keep reading
performance acceptable?

Paper “Sprite LFS”

dirl dir2
Ii : Log—>» Disk
T:y W, N L
Sprite LFS
filel file2
filel
Disk
Unix FFS

dirl dir2

Inode HIIII Directory D Data D Inode map

Block key:
«“ . ”
Paper “Sprite LFS
Threaded log Copy and Compact
Old log end New log end Old log end New log end

Block Key:
Old data block D

New data block D

Previously deleted D

9/2/20

Paper “Sprite LFS”

Segments, segment cleaning, segment summary block
— When should the segment cleaner execute?

— How many segments should it clean at a time?

— Which segments should be cleaned?

— How should the live blocks be grouped when they are
written out?

Cost-benefit policies

— Cold segments should be cleaned at high utilization
— Hot segments should be cleaned at low utilization
Checkpoints

Experimentation; metrics (“write cost”);
microbenchmarks; pros/cons; overheads

Summary “Sprite LFS”

Improve write performance

Crash recovery

Concept of segments

Segment cleaning (garbage collection)
Pros & cons?

9/2/20

Paper “F2FS”

Architecture of a solid-state drive

RAM buffer

SSD Controller

\
Processor
I ntroller,

manager

Paper “F2FS”

* NAND flash memory
* Sequential vs. random writes

— Fragmentation, life time

9/2/20

Paper “F2FS”

* Flash-Friendly On-Disk Layout
— Segment as basic unit
— Section: consecutive segments
— Zone: consecutive sections
— Node: inodes/indices; data: directory/user file data
— Separation of meta data and “actual” data

Block - 4KB
e Segment.=2M8..
lign to zone size > «Z"Section — n Segments >

Z6né = nTSeTtions”

Random Writes Ao d Multi-stream Sequential Writes .
b Zone | Zone L e Zone | Zone |
| Section | Section | Section | Section | Section | Section | Section | Section |
Segment Number jo x4 0l 0 0 0 0 0 e
Superblock #0 Check | Segment info. [, Node Address | segment summary Main Area

Superblock #1 point Table Table Area
(cp) sm k. nan (55A)
Sector #0 o (*—»-”&-—-nix - - -
Z- _Hoywarm/Cold__ > Hot/Warm/Cold

Node segments Data segments

Paper “F2FS”

e Cost-Effective Index Structure
e LFS: —

Inode for

regular file
[File data {

\
~Used for cleaning
Segment Summary /

C
\\ One big log /

9/2/20

Paper “F2FS”

e Cost-Effective Index Structure
e F2FS:

Jirectory data
l—-l File data | |I Flndal.u4]

Reference d via NAT lookup

Referenced|via NAT lookup

Muttiple logs

T o e e [

Paper “F2FS”

* Wandering tree problem

— LFS: when a file data is updated and written to the
end of log, its direct pointer changes, its indirect
pointer block is also updated, and upper index
structures (inode, inode map, checkpoint block)
are also changed

9/2/20

9/2/20

Paper “F2FS”

* Multi-Head Logging
— Data temperature classification: hot, warm, cold
— Six logging segments

* Cleaning

— Section-level; foreground (need more sections) and
background (periodic kernel thread)

— Greedy for foreground, cost-benefit for background
* Adaptive Logging
— Switch between normal and threaded logging

