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Paper “Sprite LFS”

Does Sprite LFS improve READ or WRITE
performance?

What is the biggest challenge of a log-
structured file system?

Does Sprite LFS focus on large or small files?

How does Sprite LFS keep reading
performance acceptable?
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Paper “Sprite LFS”

Segments, segment cleaning, segment summary block
— When should the segment cleaner execute?

— How many segments should it clean at a time?

— Which segments should be cleaned?

— How should the live blocks be grouped when they are
written out?

Cost-benefit policies

— Cold segments should be cleaned at high utilization
— Hot segments should be cleaned at low utilization
Checkpoints

Experimentation; metrics (“write cost”);
microbenchmarks; pros/cons; overheads

Summary “Sprite LFS”

Improve write performance

Crash recovery

Concept of segments

Segment cleaning (garbage collection)
Pros & cons?
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Architecture of a solid-state drive
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Paper “F2FS”

* NAND flash memory
* Sequential vs. random writes

— Fragmentation, life time
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* Flash-Friendly On-Disk Layout
— Segment as basic unit
— Section: consecutive segments
— Zone: consecutive sections
— Node: inodes/indices; data: directory/user file data
— Separation of meta data and “actual” data
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Paper “F2FS”
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e Cost-Effective Index Structure
e F2FS:
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Paper “F2FS”

* Wandering tree problem

— LFS: when a file data is updated and written to the
end of log, its direct pointer changes, its indirect
pointer block is also updated, and upper index
structures (inode, inode map, checkpoint block)
are also changed
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* Multi-Head Logging
— Data temperature classification: hot, warm, cold
— Six logging segments

* Cleaning

— Section-level; foreground (need more sections) and
background (periodic kernel thread)

— Greedy for foreground, cost-benefit for background
* Adaptive Logging
— Switch between normal and threaded logging




