Graduate Operating Systems (Embedded Systems & Scheduling)

Fall 2020

- Periodic task T_i
 - Period P_i
 - Worst case execution time C_i
 - Relative deadline D_i
- Job J_{ik}
 - Absolute deadline = release time + relative deadline
 - Response time = finish time release time
- · Deadline miss if
 - Finish time > absolute deadline
 - Response time of $J_{ik} > D_i$

Paper "RM/EDF"

- Table-driven scheduling
- Jitter
- Hyperperiods

Common Assumptions

- Single processor
- Every task is periodic
- Deadline = period
- Tasks are independent
- WCET of each task is known
- Zero context switch time

- Fixed priority system
 - Assign the same priority to all the jobs in each task
 - Rate monotonic (RMS)
- Dynamic priority system
 - Assign different priorities to the individual jobs in each task
 - Earliest Deadline First (EDF)

Paper "RM/EDF"

- Implementation complexity
 - Modifying systems vs. from scratch
 - Periods for newly arriving tasks
 - Fixed vs. infinite number of priority levels
 - EDF runtime overheads (priorities change)
 - Winner: RMS

