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Paper “RM/EDF”

e The correctness of the system
— Logical/functional
— Temporal
* RT computing
— The objective of “fast computing” is to minimize
the average response time

— The objective of real-time computing is to meet
the individual timing requirement of each task
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e Hard vs. soft real-time

* Closed-loop control
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Paper “RM/EDF
* Job
— Each unit of work that is scheduled and executed by the system
* Task

— Aset of related jobs

— For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at
every period

* Release time
— Time instant at which a job becomes available for execution
— It can be executed at any time at or after the release time
* Deadline
— Time instant by which a job should be finished
— Relative deadline: Maximum allowable response time
— Absolute deadline = release time + relative deadline
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* Periodic task T;
— Period P,
— Worst case execution time C;
— Relative deadline D;
* Job Jik
— Absolute deadline = release time + relative deadline
— Response time = finish time — release time
* Deadline miss if
— Finish time > absolute deadline
— Response time of J; > D,

Periodic Task Model
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jobs (j1, j2, j3, ---)

Deadline =D

lz 7z |

\\3
 —
\\\\J

\\\\J

N

H_j WJ time '

Period=T Computation time

WCET=C
Release Time




10/18/20

Paper “RM/EDF”

* Table-driven scheduling
o Jitter

* Hyperperiods

Paper “RM/EDF”

e A scheduling algorithm S is optimal if S cannot
schedule a real-time task set T, no other
scheduling algorithm can schedule T

* E.g., Rate Monotonic & EDF




Common Assumptions

Single processor

Every task is periodic

Deadline = period

Tasks are independent
WCET of each task is known
Zero context switch time

Paper “RM/EDF”

* Fixed priority system
— Assign the same priority to all the jobs in each task
— Rate monotonic (RMS)

* Dynamic priority system

— Assign different priorities to the individual jobs in
each task

— Earliest Deadline First (EDF)
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* RMS: optimal fixed priority scheduling
algorithm

 Shorter period - Higher priority
— Higher rate - higher priority

* Utilization bound

U= /T <n(33-1)
i=1

lim n(V2—1)=1n2~ 0.693147..

n—aoo

RMS (Rate Monotonic Scheduling)

Process P;: service time = 20, period = 50, deadline = 50

Process P: service time = 35, period = 100, deadline = 100
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Missed Deadlines with RMS

failure
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Process P;: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80
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e EDF: shorter absolute deadline - Higher
priority

* Utilization bound U,=1

* U, is necessary and sufficient




EDF (Earliest Deadline First)

Process P;: service time = 25, period = 50, deadline = 50

Process P,: service time = 35, period = 80, deadline = 80
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Paper “RM/EDF”

* RMS
— RMS may not guarantee schedulability even when U < 1
— Low overhead: priorities do not change for a fixed task set

* EDF
— EDF guarantee schedulability as longas U <=1
— High overhead: task priorities may change dynamically
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* Implementation complexity
— Modifying systems vs. from scratch
— Periods for newly arriving tasks
— Fixed vs. infinite number of priority levels
— EDF runtime overheads (priorities change)

— Winner: RMS

Paper “RM/EDF”

* Run-time overhead

— Updating deadlines costly
— EDF: fewer context switches (preemptions)
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Figure 1. Preemptions introduced by RM (a) and EDF (b) on a set of two periodic tasks. Adjacent jobs of 7, are
depicted with different colours to better distinguish them.
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* Run-time overhead

Paper “RM/EDF”

* Run-time overhead
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* Winner: EDF
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* Schedulability analysis
— EDF (d=p): simple
— RMS: U <= 0.69; simple, but resources wasted
* Hyperbolic bound (higher acceptance ratio for large n)
— Exact for EDF:

* Processor Demand Criterion (PDC) for d<p

— Exact for RMS:
* Response Time Analysis (RTA)

Paper “RM/EDF”
* Schedulability analysis
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e Winner: Tie?
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* Robustness during overloads

— Permanent

— Winner: RMS
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Figure 8. Schedules produced by EDF (a) and RM (b) for a set of three periodic tasks in a permanent overload
condition.
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* Robustness during overloads

— Transient

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for
the other tasks.

— Winner: Tie
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* Jitter and Latency

e Winner: Tie?
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* Resource sharing
— Solutions for EDF and RMS exist
* Aperiodic tasks

— Periodic servers (EDF has higher utilization
bounds)

* Resource reservations

— Reservation protocols exist for EDF and RMS
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