Graduate Operating Systems
(Embedded Systems & Scheduling)

Fall 2020

Paper “RM/EDF”

e The correctness of the system
— Logical/functional
— Temporal
* RT computing
— The objective of “fast computing” is to minimize
the average response time

— The objective of real-time computing is to meet
the individual timing requirement of each task

10/18/20

10/18/20

Paper “RM/EDF”

e Hard vs. soft real-time

* Closed-loop control

reference

| |
L _ 1
input r(t) 1 A/D ” | control-law Uk 1
! Yk | computation »(D/A !
! A/D > !
1 - 1
! A !
[| _ __1
y(t) u(t
v
Sensor |4 plant |« actuator
Outside effects—J The system
being controlled
o ”
Paper “RM/EDF
* Job
— Each unit of work that is scheduled and executed by the system
* Task

— Aset of related jobs

— For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at
every period

* Release time
— Time instant at which a job becomes available for execution
— It can be executed at any time at or after the release time
* Deadline
— Time instant by which a job should be finished
— Relative deadline: Maximum allowable response time
— Absolute deadline = release time + relative deadline

10/18/20

Paper “RM/EDF”

* Periodic task T;
— Period P,
— Worst case execution time C;
— Relative deadline D;
* Job Jik
— Absolute deadline = release time + relative deadline
— Response time = finish time — release time
* Deadline miss if
— Finish time > absolute deadline
— Response time of J; > D,

Periodic Task Model

Task = {T, C, D}

jobs (j1, j2, j3, ---)

Deadline =D

lz 7z |

\\3
 —
\\\\J

\\\\J

N

H_j WJ time '

Period=T Computation time

WCET=C
Release Time

10/18/20

Paper “RM/EDF”

* Table-driven scheduling
o Jitter

* Hyperperiods

Paper “RM/EDF”

e A scheduling algorithm S is optimal if S cannot
schedule a real-time task set T, no other
scheduling algorithm can schedule T

* E.g., Rate Monotonic & EDF

Common Assumptions

Single processor

Every task is periodic

Deadline = period

Tasks are independent
WCET of each task is known
Zero context switch time

Paper “RM/EDF”

* Fixed priority system
— Assign the same priority to all the jobs in each task
— Rate monotonic (RMS)

* Dynamic priority system

— Assign different priorities to the individual jobs in
each task

— Earliest Deadline First (EDF)

10/18/20

10/18/20

Paper “RM/EDF”

* RMS: optimal fixed priority scheduling
algorithm

 Shorter period - Higher priority
— Higher rate - higher priority

* Utilization bound

U= /T <n(33-1)
i=1

lim n(V2—1)=1n2~ 0.693147..

n—aoo

RMS (Rate Monotonic Scheduling)

Process P;: service time = 20, period = 50, deadline = 50

Process P: service time = 35, period = 100, deadline = 100

Deadlines P, P, Py P4 Py P
‘ P|1 | I P2| ‘ FT1 |P2| | | PH ‘ | P> | | 31 ‘PZ‘ | | J
0 10 20 30 40 50 60 70 80 90 100110 120 130 140 150 160 170 180 190 200

10/18/20

Missed Deadlines with RMS

failure
Deadlines P4 Ps P4 Py P>
J / | bl

‘ |P1||\P2\ | \P1||F72|1 | | | | | | J
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Process P;: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80

N N2 —1)

2 0,828427
RMS is guaranteed v ﬁi < N(% : 1) . 3 0,779763
to work if = p, ' 4 0,756828
N = number of processes 5 0,743491
sufficient condition ~ [lim N(¥2-1)=n2~0.603147| [10 [0717734

20 0,705298

Paper “RM/EDF”

e EDF: shorter absolute deadline - Higher
priority

* Utilization bound U,=1

* U, is necessary and sufficient

EDF (Earliest Deadline First)

Process P;: service time = 25, period = 50, deadline = 50

Process P,: service time = 35, period = 80, deadline = 80

Deadlines Py P Py P, P,
} | | b

l IP‘J|I JPZI ‘ IP‘J|IP2‘ IP‘J|IP2J|I |

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Paper “RM/EDF”

* RMS
— RMS may not guarantee schedulability even when U < 1
— Low overhead: priorities do not change for a fixed task set

* EDF
— EDF guarantee schedulability as longas U <=1
— High overhead: task priorities may change dynamically

10/18/20

Paper “RM/EDF”

* Implementation complexity
— Modifying systems vs. from scratch
— Periods for newly arriving tasks
— Fixed vs. infinite number of priority levels
— EDF runtime overheads (priorities change)

— Winner: RMS

Paper “RM/EDF”

* Run-time overhead

— Updating deadlines costly
— EDF: fewer context switches (preemptions)

L S S S SN Sy s

10 20 2

10 0 25 3

|| o s |

0 % 14 21

Figure 1. Preemptions introduced by RM (a) and EDF (b) on a set of two periodic tasks. Adjacent jobs of 7, are
depicted with different colours to better distinguish them.

10/18/20

Paper “RM/EDF”

* Run-time overhead

Paper “RM/EDF”

* Run-time overhead

m"bmb.._m.. m
""—\ [ﬁﬂ ‘
“‘ , [| -

" m___ m__m

* Winner: EDF

10/18/20

10

Paper “RM/EDF”

* Schedulability analysis
— EDF (d=p): simple
— RMS: U <= 0.69; simple, but resources wasted
* Hyperbolic bound (higher acceptance ratio for large n)
— Exact for EDF:

* Processor Demand Criterion (PDC) for d<p

— Exact for RMS:
* Response Time Analysis (RTA)

Paper “RM/EDF”
* Schedulability analysis

||||||||||||

e Winner: Tie?

10/18/20

11

Paper “RM/EDF”

* Robustness during overloads

— Permanent

— Winner: RMS

@ 7,4/8)
0 8 16 24 32 40 48 S6 64 72 80 88 96 104 112 120

7(6/12)
0 12 2 36 48 60 72 84 9 108 120

7,(5/20)

0 20 40 60 80 100 120

© s by b e |

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

'=“‘“3’||:||5nHDE‘\HDEHHDEHHEIE‘\H

24 36 48 60 72 84 96 108 120

| | | |

0 20 40 60 80 100 120

3 (520) |

Figure 8. Schedules produced by EDF (a) and RM (b) for a set of three periodic tasks in a permanent overload
condition.

Paper “RM/EDF”

* Robustness during overloads

— Transient

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for
the other tasks.

— Winner: Tie

10/18/20

12

Paper “RM/EDF”

* Jitter and Latency

e Winner: Tie?

Paper “RM/EDF”

* Resource sharing
— Solutions for EDF and RMS exist
* Aperiodic tasks

— Periodic servers (EDF has higher utilization
bounds)

* Resource reservations

— Reservation protocols exist for EDF and RMS

10/18/20

13

