8/21/20

Graduate Operating Systems
(Threads & Events)

Fall 2020

Today’s Papers

 [4] D. Stein and D. Shah, "Implementing
Lightweight Threads", Proc. of USENIX, San
Antonio, TX, June 1992.

* [5] John Ousterhout, "Why Threads are a Bad
Idea (for most purposes)”, talk given at
USENIX Annual Conference, September 1995.

Concurrency vs. Parallelism

3322333 pm
1333334 I

Concurrent: 2 queues, 1 vending machine

s333ete-
2331384

Parallel: 2 queues, 2 vending machines

Concurrency Parallelism
Tasks start, run and Tasks run
complete in simultaneously

an interleaved fashion

Microprocessor Trends

42 Years of Microprocessor Trend Data

T T T T Y

107 | N i
and Transistors
A ta 4 thousands
106 | : AA A _ ()
Y e
51 1A£‘A | Single-Thread
10 o0
A o @90 Performance
4 o 0id3 e | (SpecINT x 10
10" | Apa e el
AL u
e Frequency (MHz
ol - kAA_cﬁlglhﬂ_- gu | Freauency (M)
[]
- %I * Typical Power
102 | A A 2.. ’-v- v vv',;; ';“'Vvv;‘é :,: 1 (Watts)
1 . - Tty v 0::.'* Number of
10 N v FOREAN g .
(] v o3 Logical Cores
L g v 7 i YvY vv OQM‘
100 - ; * R G0 6 AN LU WO ¢ & B
Il 1 Il |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp.

8/21/20

8/21/20

Processes vs. Threads

Single Thread Multi Threaded
I Registers ” Stack] [Registers ” Stack] [Registers ” Stack]

= ———

Thread
S |- E
Thread

PC PCy PC

Events

EventEmitters Events m Event Handlers
O-000] ==~)

Types of Threads

space
- <«—— lightweight process

I $ $ $
/
Threads User
library space
J }Z J Kemel
€D D
1 ® © P
N \/1 /

(a) Pure user-level

—/

(b) Pure kemnel-level

< «——user thread
p;

@— kemel thread

Figure 4.13 Lightweight process (LWP).

Thread Models

1

§
@

®

1

iy

3

ANV D

Many-to-one

(44
(ﬁ i) “.i)
OO o

%

o
o

OO

One-to-one

many-to-many

@ User-level thread ® Kernel -level thread

Two-level

user
space

kernel
space

8/21/20

Paper Discussion

Why are threads cheaper than processes?
How is IPC performed using threads?
Why is synchronization between threads needed?

Two creation approaches: create ALL threads or
create only CALLING thread; difference?

What is “thread-local storage”?

What are bound threads and why are they
useful?

Why is signaling challenging?

Pthreads (POSIX 1003.1c)

#include <stdio.h>
#include <pthread.h>

void printMsg(char* msg) {
int status = 0;
printf(“%s\n”, msg);
pthread_exit(&status);

int main(int argc, char** argv) {
pthread_t thrdID;

int* status = (int*)malloc(sizeof(int));

printf(“creating a new thread\n”);

pthread_create(&thrdID, NULL, (void*)printMsg, argv[1]);
printf(“created thread %d\n”. thrdID);

pthread_join(thrdID, &status);

printf(“Thread %d exited with status %d\n”, thrdID, *status);

return O;

8/21/20

Common Programming Models

Multi-threaded programs tend to be structured as:

— Producer/consumer
Multiple producer threads create data (or work) that
is handled by one of the multiple consumer threads

— Pipeline
Task is divided into series of subtasks, each of which
is handled in series by a different thread

— Defer work with background thread

One thread performs non-critical work in the
background (when CPU idle)

Threads vs. Events

* What is biggest problem with threads (in reading
assignment)?
* Threads:
— Independent execution streams
— Preemptive scheduling
— Synchronization
— Deadlocks
— Debugging
— “Threads break abstraction”
— Getting good performance
— OS support of threads

8/21/20

8/21/20

Threads vs. Events

* Events:
— No CPU concurrency
— Callbacks; event handlers
— No preemption
— Long-running handlers
— State across handler invocations
— Debugging
— Overheads
— Portability

Problems with Threads (Paper)

Performance
— Poor design; not intrinsic properties
Control flow

— Complicated control flow patterns are rare (call/return
most common)

Synchronization
— Cooperative multitasking (no preemption)
State management

— Minimize live stack (dynamic stack growth and live state
management)

Scheduling

— Event scheduling tricks can be applied to threads too

8/21/20

Conclusions

* Threads?
 Events?

e Future directions?
— Many-core systems
— Locking
— New languages, compilers, thread packages
— Hybrid models?

