8/21/20

Graduate Operating Systems
(Threads & Events)

Fall 2020

Today’s Papers

* [6] Rob von Behren, Jeremy Condit, and Eric
Brewer, "Why Events are a Bad Idea (for high-
concurrency servers)", Workshop on Hot
Topics in Operating Systems, 2003.

* [7] Matt Welsh, David Culler, and Eric Brewer,
"SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services", ACM Symposium
on Operating Systems Principles, 2001.

Threads vs. Events

| registers | | stack | | registers H registers || registers I

| stack | | stack ‘ stack |

code | code |

S| T

threaded

EventEmitters Events m Event Handlers
O] =~=~{}

Threads vs. Events

* 1995: Why Threads are a Bad Idea (for most
purposes)
— John Ousterhout (UC Berkeley, Sun Labs)
* 2001: SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services
— Staged, Event-driven Architecture
— M. Welsh, D. Culler, and Eric Brewer (UC Berkeley)
* 2003: Why Events are a Bad Idea (for high-

concurrency SE‘I’VE’FS)
— R.van Behren, J. Condit, Eric Brewer (UC Berkeley)

8/21/20

Background

* How can we scale up
servers to handle
many simultaneous
requests?

time

HTTP processing

Receive HTTP
request over
network

Process request &
generate response

Send HTTP response
over network

Quick Example

* Suppose it takes 1 second for a web server to transfer
a file to the client. Of this time, 10 milliseconds is
dedicated to CPU processing. How many
simultaneous requests do we need to keep the CPU

fully utilized?

8/21/20

Strategy #1: Thread-per-Request

* Run each web request in its own thread

— Assuming kernel threads, blocking 1/O operations
only stall one thread

geegge

L2 S

=
gﬁm
4)1*

=
5\;2:\‘!7
i~

N

Zé@

| v

=

PN
@é@a"mm"mm"
D)z

I

PN

=

y

I

Strategy #1: Thread-per-Request

while (true) {
read request from socket
read requested file into buffer
write buffer content over socket
close socket

8/21/20

Strategy #2: Event-Driven Execution

* Use a single thread for all requests
* Use non-blocking I/0

— Replace blocking I/0 with calls that return
immediately

— Program is notified about interesting 1/0 events

* This is philosophically similar to hardware
interrupts

— “Tell me when something interesting happens”

Strategy #2: Event-Driven Execution

while (true) {
find sockets with active I/O
Socket sock = getActiveSocket();
if (sock.isReadable())
handleReadEvent(sock);
if (sock.isWriteable())

handleWriteEvent(sock);
}

* Example: GUI frameworks (What are examples of
events?)

8/21/20

UNIX “select” System Call

int select(int nfds, fd_set *readfds, fd_set

*writefds, fd_set *exceptfds, struct timeval
*timeout);

Events

* Are events simpler or harder than threads?
* Events & concurrency

* |s event-based or threaded code easier to
understand?

8/21/20

“Problems” with Threads

Threads for high concurrency do not perform

well

Threads have restrictive control flow
Thread synchronization is heavyweight

Thread stacks are ineffective

Optimal scheduling decisions are hard

Compiler Support for Threads

e Dynamic stack growth

* Live state management

e Synchronization

900

g 8
8 8

Mbits / second

2
S
3

S
o 8

Y
s 8
S 3
T

N

3

S
T

3
S
T

Concurrent Clients

8/21/20

8/21/20

Paper “SEDA”

e “Slashdot effect”; peak load

* “Well-conditioned service”
— Throughput: saturate with load
— Response time: increase linearly with load
— Graceful degradation

Thread-Based Concurrency

Easy to program; high concurrency

Overheads

Throughput degradation (bounded thread
pools)

Latency

ghput —=—

15000

Number of threads

Event-Driven Concurrency

Small number of threads (typically one per
CPU); non-blocking 1/0

Robust to load
Latency
Scheduling decisions; load dropping

35000

Throut
30000 4
25000
20000
15000

10000

Throughput, tasks/sec

5000

0
1

1024
Number of tasks in pipeline

SEDA: Staged Event Driven
Architecture

8/21/20

Resource Controllers

* Thread pool controller
— Adjust number of threads executing

200

160

w7 D b

=
8

a
&

Observe 0
Thread Pool
Length Thread pool size M/ ®
Adjust ! .
—’@ Size :
15
Threshold 0 “ o Tlm:‘:?seclr:lz‘r)\?als) e

Resource Controllers

* Batching controller

— Adjust number of events processed by each
iteration of the event handler

1200

1000
800
[[} Stage output rate
/ 600
Event Handler <: Other Stages 400
200
e [11] °]

100

Thread Pool
Adjust [T1T] - 80
Batching :I Batching factor .
Factor Observe ©
Rate .

Running Avg 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (100 ms intervals))

8/21/20

10

Queues

Queues are finite

— Enqueuing may fail

— Block on full queue -> backpressure

— Drop rejected events -> load shedding

* Queues introduce explicit execution boundaries
— Threads may only execute within a single stage
management

* Explicit event delivery support inspection
— Trace flow of events through application

— Monitor queue lengths to detect bottleneck

— Performance isolation, modularity, independent load

Accept

%ﬁm

Reject

W |

— 111l

Profile

Asynchronous I/0

pplication

Y r=—wN
-

asyncClientSocket

asyncServerSocket

Listen

New
connection request

Write

Write complete

request

- @]

H E H

T Read ready T Write ready T Connect pending
| Operating System ‘

11

8/21/20

Summary & Discussion

» SEDA: Staged, Event-Driven Architecture

— Applications consist of connected stages each serviced by one
or more threads

— Dynamic resource controllers examine and react to high load
conditions and control thread usage

* Measurement and control vs. reservation
— Mechanisms for detecting overload
— Policies to deal with overload
* SEDA ease of programming
— Reduced need for synchronization & race conditions
— Separate stages for different components of application/server

8/21/20

12

