
8/21/20

1

Graduate Operating Systems
(Threads & Events)

Fall 2020

Today’s Papers

• [6] Rob von Behren, Jeremy Condit, and Eric
Brewer, "Why Events are a Bad Idea (for high-
concurrency servers)", Workshop on Hot
Topics in Operating Systems, 2003.

• [7] Matt Welsh, David Culler, and Eric Brewer,
"SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services", ACM Symposium
on Operating Systems Principles, 2001.

8/21/20

2

Threads vs. Events

Threads vs. Events

• 1995: Why Threads are a Bad Idea (for most
purposes)
– John Ousterhout (UC Berkeley, Sun Labs)

• 2001: SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services
– Staged, Event-driven Architecture

– M. Welsh, D. Culler, and Eric Brewer (UC Berkeley)

• 2003: Why Events are a Bad Idea (for high-
concurrency servers)
– R. van Behren, J. Condit, Eric Brewer (UC Berkeley)

8/21/20

3

Background

• How can we scale up
servers to handle
many simultaneous
requests?

Receive HTTP
request over
network

Process request &
generate response

Send HTTP response
over network

time

HTTP processing

Quick Example
• Suppose it takes 1 second for a web server to transfer

a file to the client. Of this time, 10 milliseconds is
dedicated to CPU processing. How many
simultaneous requests do we need to keep the CPU
fully utilized?

8/21/20

4

Strategy #1: Thread-per-Request

• Run each web request in its own thread
– Assuming kernel threads, blocking I/O operations

only stall one thread

Strategy #1: Thread-per-Request

while (true) {
read request from socket
read requested file into buffer
write buffer content over socket
close socket

}

8/21/20

5

Strategy #2: Event-Driven Execution

• Use a single thread for all requests
• Use non-blocking I/O
– Replace blocking I/O with calls that return

immediately
– Program is notified about interesting I/O events

• This is philosophically similar to hardware
interrupts
– “Tell me when something interesting happens”

Strategy #2: Event-Driven Execution

while (true) {
find sockets with active I/O
Socket sock = getActiveSocket();
if (sock.isReadable())

handleReadEvent(sock);
if (sock.isWriteable())

handleWriteEvent(sock);
}

• Example: GUI frameworks (What are examples of
events?)

8/21/20

6

UNIX “select” System Call

int select(int nfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, struct timeval
*timeout);

Events

• Are events simpler or harder than threads?
• Events & concurrency
• Is event-based or threaded code easier to

understand?

8/21/20

7

“Problems” with Threads

• Threads for high concurrency do not perform
well

• Threads have restrictive control flow
• Thread synchronization is heavyweight
• Thread stacks are ineffective
• Optimal scheduling decisions are hard

Compiler Support for Threads

• Dynamic stack growth
• Live state management
• Synchronization

8/21/20

8

Paper “SEDA”

• “Slashdot effect”; peak load
• “Well-conditioned service”
– Throughput: saturate with load
– Response time: increase linearly with load
– Graceful degradation

Thread-Based Concurrency

• Easy to program; high concurrency
• Overheads
• Throughput degradation (bounded thread

pools)
• Latency

8/21/20

9

Event-Driven Concurrency

• Small number of threads (typically one per
CPU); non-blocking I/O

• Robust to load
• Latency
• Scheduling decisions; load dropping

SEDA: Staged Event Driven
Architecture

8/21/20

10

Resource Controllers

• Thread pool controller
– Adjust number of threads executing

Resource Controllers

• Batching controller
– Adjust number of events processed by each

iteration of the event handler

8/21/20

11

Queues
• Queues are finite

– Enqueuing may fail
– Block on full queue -> backpressure
– Drop rejected events -> load shedding

• Queues introduce explicit execution boundaries
– Threads may only execute within a single stage
– Performance isolation, modularity, independent load

management

• Explicit event delivery support inspection
– Trace flow of events through application
– Monitor queue lengths to detect bottleneck

Asynchronous I/O

8/21/20

12

Summary & Discussion
• SEDA: Staged, Event-Driven Architecture

– Applications consist of connected stages each serviced by one
or more threads

– Dynamic resource controllers examine and react to high load
conditions and control thread usage

• Measurement and control vs. reservation
– Mechanisms for detecting overload
– Policies to deal with overload

• SEDA ease of programming
– Reduced need for synchronization & race conditions
– Separate stages for different components of application/server

