
1

Midterm	Exam	–	Graduate	Operating	Systems	
CSE	60641	–	Fall	2018	

	
	
	
	
	
	
	
	
NAME:					__	
	
	
	
	
Reminders	

	
1. Make sure to look through entire exam from front to back.
2. You are welcome to use the front and back of the exam pages.
3. Please be concise in your answers if possible. A dissertation response is not needed for most

questions.
4. Illustrations can be helpful to convey your point.
5. When in doubt, ask a question.
6. Try to at least have a partial answer for each exam item.
7. Some answers may depend on context. Clearly define the context if necessary for your answer.
8. The exam is closed book, closed note, closed computer, closed electronic device.
9. Write your answers legibly.
10. If one of your colleagues missed the exam and has to retake it at a later time, discussing the

exam with that colleague before he/she has taken the exam will be considered cheating!
	
	
	
	
	 	

2

Question	 1:	 Many	 scalable	 distributed	 file	 system	 designs	 separate	 data	 servers	 from	
metadata	servers.		

a.) Provide	an	example	(e.g.,	describe	a	specific	file	I/O	scenario)	where	this	is	beneficial.		
	
	
	
	
	
	
	

b.) Further,	many	of	these	solutions	use	multiple	data	servers,	but	just	a	single	metadata	
server.	Why?	

	
	
	
	
	
	
	
Question	2:	The	Berkeley	Fast	File	System	(FFS)	made	several	changes	to	the	original	UNIX	
file	system.	One	of	them	was	to	replace	the	“free	list”	with	a	“bit	map”.		
	

a.) Why	 did	 FFS	 implement	 this	 modification,	 i.e.,	 describe	 at	 least	 one	 significant	
advantage	of	a	bit	map	over	a	free	list?	

	
	
	
	
	
	
	

b.) 	Assume	that	the	table	below	shows	a	snapshot	of	a	bit	map	for	64	blocks	of	data,	each	
block	being	1Kbyte.	Assume	a	“1”	indicates	a	free	block	and	a	“0”	a	used	block.	What	
is	the	largest	contiguous	region	in	memory	you	could	allocate	for	a	new	file?	If	a	new	
file	was	12Kbytes,	which	blocks	would	you	allocate	 to	maximize	 contiguity	 (clearly	
indicate	in	the	figure	below	which	blocks	you	would	allocate)?	

	

															 	
	
	
	
	

3

Question	3:	 In	 Sprite	LFS	 (Log-Structured	File	System),	 all	data	and	metadata	are	grouped	
into	 chunks	 (called	 “segments”)	 and	 then	written	 to	 disk	 to	 a	 free	 location	 on	 disk.	 Does	
Sprite	LFS	try	to	improve	primarily	READ	or	WRITE	performance?	How	is	this	achieved?		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Question	4:	Monitors	also	provide	condition	variables	with	two	operations:	wait	and	signal	
(e.g.,	a	program	can	call	wait	on	condition	variable	x	using	x.wait).	Below	are	code	segments	
for	two	threads	(Thread	1	and	Thread	2).	Show	how	you	can	use	one	(or	multiple)	condition	
variable(s)	to	ensure	that	the	output	of	the	program	will	always	be	“Notre	Dame	beat	Virgina	
Tech!”	
	
	
	
	 Thread	1:	 	 	 	 	 Thread	2:	
	 	 	
	
	
	 	 printf(“Notre”);	 	 	 	 printf(“	Dame”);	
	
	
	
	
	 	 printf(“	beat”);		 	 	 	 printf(“	Virginia	Tech!”);	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

4

	
Question	5:		
	

a.) Explain	 why	 RAID	 0	 (striping)	 increases	 read	 performance,	 but	 decreases	 fault	
tolerance?		

	
	
	
	
	
	
	
	
	

b.) Explain	how	RAID	1	(mirroring)	increases	both	read	performance	and	fault	tolerance	
(surviving	any	single	fault)	at	the	cost	of	doubling	disk	usage.		

	
	
	
	
	
	
	

Question	6:	Assume	a	file	system	that	uses	blocks	of	size	4MB.	What	would	be	an	advantage	
of	such	a	large	block	size?	How	much	internal	fragmentation	will	each	file	have	on	average?	
Now	further	assume	that	the	system	allows	you	to	perform	write	operations	with	a	
granularity	of	4KB	(instead	of	the	entire	4MB	block).	What	advantage	would	this	have?	

	

	

	

	

	

Question	7:	Explain	the	concept	of	“whole-file	caching”	and	what	are	one	advantage	and	one	
disadvantage	of	this	approach?	

	

	

	

	

5

	

Question	8:	You	are	tasked	with	building	a	server	where	it	is	more	important	to	service	some	
requests	with	an	upper	bound	on	response	latency	as	opposed	to	serving	all	requests	with	
unbounded	latency.	How	would	you	design	such	a	server?	

	

	

	

	

	

	

	

Question	9:	Is	it	possible	for	the	two	threads	to	deadlock	by	concurrent	calls	to	the	functions	
A	and	B	below?	If	so,	give	an	example	of	an	execution	trace	that	leads	up	to	deadlock.	If	not,	
explain	why	deadlock	is	impossible.	

	

void A (){
 ...
 pthread_mutex_lock (&M2);
 pthread_mutex_lock (&M1);
 ... critical section ...
 pthread_mutex_unlock (&M1);
 pthread_mutex_unlock (&M2);
}
void B (){
 ...
 pthread_mutex_lock (&M1);
 pthread_mutex_lock (&M2);
 ... critical section ...
 pthread_mutex_unlock (&M2);
 pthread_mutex_unlock (&M1);
}
	

	

	

