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Abstract 

 

The development of collaborative multimedia applications today follows a vertical development approach, where 
each application is built on top of low-level network abstractions such as the socket interface. This stovepipe development 
process is a major inhibitor that drives up the cost of development and slows down the innovation pace of new 
generations of communication applications. In this paper, we propose a network communication broker (NCB) that 
provides a unified higher-level abstraction for the class of multimedia collaborative applications. We demonstrate how 
NCB encapsulates the complexity of network-level communication control and media delivery, and expedites the 
development of applications with various communication logics. We investigate the minimum necessary requirements for 
the NCB abstraction. We identify that the concept of user-level sessions involving multiple parties and multiple media, is 
critical to designing a reusable NCB to facilitate next-generation multimedia communications. Furthermore, the internal 
design of NCB decouples the user-level sessions from network-level sessions, so that the NCB framework can 
accommodate heterogeneous networks, and applications can be easily ported to new network environments. In addition, 
we demonstrate how the extensible and self-managing design of NCB supports dynamic adaptation in response to changes 
in network conditions and user requirements. 



 

 

1. Introduction 

 

The convergence of various multimedia communications including voice, video and data over IP networks during 
the past decade has resulted in the emergence of a wide range of collaborative applications including Scientific 
Collaboration, Video Conferencing, Voice over IP (VoIP), and Instant Messaging, among others. These collaborative 
applications have the potential to dramatically impact our everyday life. However, the fast pace growth of innovations has 
been restrained by the stovepipe approach currently employed in application development.  

Today, the development of domain-specific collaborative applications is both time-consuming and error-prone 
because the low-level communication services provided by the existing systems and networks are primitive and often 
heterogeneous. Multimedia collaborative applications are typically built on top of low-level network abstractions such as 
TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. Further, the underlying 
network configurations can also vary significantly which can reduce portability within applications developed using a 
vertical stovepipe approach.  

What is lacking is a systematic approach to design and development across high-level collaborative applications. In 
[6], we introduced Communication Virtual Machine (CVM) that represents a paradigm shift in how a collaborative 
application is conceived and delivered. In CVM, general-purpose or domain-specific communication needs are specified 
in a model, called communication schema, independent of device types and underlying network configuration. Such a 
model is instantiated, negotiated, synthesized and executed, by a fully automated process, to satisfy the users’ 
communication needs. Under this model, a communication modeling language is proposed to provide an intuitive graphic 
form for users to model declaratively their communication requirements.  A synthesis engine is further responsible for 
automatically synthesizing user communication sessions. This model-driven communication is supported by the CVM 
layered architecture. The layered architecture provides separation of major concerns such as modeling application-
dependent collaboration logic, automatic generation of scripts to drive the collaboration logic, and the application-
independent basic communication service reusable by various applications (i.e. network communication broker to 
interface with the underlying network infrastructure).  

As the basic application-independent communication service that actually delivers the communication is fundamental 
not only to the CVM architecture but also to the development of any collaborative application, we focus on the abstraction, 
internal architecture, and implementation of this layer in this paper, based on our early primary work in [34]. We propose 
Network Communication Broker (NCB), a user-centric middleware that encapsulates the networking complexity and 
heterogeneity of basic multimedia and multi-party communication for upper-layer collaborative applications. As 
illustrated in Figure 1, NCB provides a unified user-centric communication service to diverse collaborative 
communication applications ranging from a simple phone call and video conferencing to specialized communication 
applications like scientific collaboration, disaster management, and telemedicine. Under this unified high-level abstraction, 
internally NCB coordinates the underlying heterogeneous network infrastructure, systems and libraries to ensure that basic 
communication tasks are carried out smoothly. The key innovation of the NCB concept is a horizontal abstraction that 
separates and isolates the complexities of network-level communication control and media delivery from the diversity of 
application-dependent collaboration logic. 



 

 

Since the NCB provides a service of user-centric multimedia collaboration, we identify the scope of its encapsulation 
more specifically to multi-party multimedia telecommunication. We summarize the values of this unified NCB 
encapsulation as follows:  

 The unified abstraction by itself is generic enough to provide basic user-centric communication services reusable by a 
wide variety of collaborative applications.  

 Applications, developed based on NCB, are transparent to the details of underlying network protocols and 
infrastructure. The high-level application-dependent collaboration logic therefore becomes relatively simple to build. 

 NCB hides network heterogeneity from the applications so that applications can be easily ported to new network 
environments.  

In this paper, we investigate the minimum necessary requirements for the NCB to be able to support complex 
collaboration logic involving multiple parties and multiple media and to provide an interface that exemplifies this 
abstraction. In terms of approaches, the paper has made two novel contributions. We first identified that the concept of 
user-level sessions (vs. network-level sessions adopted by the existing protocols) is critical to designing a flexible NCB 
interface to support various next-generation collaborative communications. The internal design of NCB separates the user-
level sessions and network-level sessions, such that the NCB framework can accommodate heterogeneous networks.  

Furthermore, we demonstrate how the extensible and self-managing design of NCB supports dynamic adaptation in 
response to changes in network conditions and user requirements. To be more specific, NCB contains a self-management 
module that can conduct self-optimization to autonomously adapt media-delivery to the changing network conditions (e.g. 
bandwidth). Moreover, the adaptive behavior of the middleware can be defined according to the preferences of users or 
applications, specified as high-level policies. 

The rest of this paper is organized as follows. In Section 2, we identify the set of requirements for the NCB 
abstraction and present a minimal interface for NCB that reflects these requirements. In Section 3, we overview NCB’s 
internal architecture and design. In Section 4, we introduce the prototype implementation of NCB in Java, as well as 
experiments and findings. Section 5 presents related work and Section 6 provides some concluding remarks. 

  

2. NCB Abstraction and Interface 
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Figure 1: NCB separates network communication complexity from application collaboration logic. 



 

In this section, first, we identify the set of necessary requirements from the perspective of next-generation 
collaborative applications. We then present an interface that reflects the requirements.  

 

2.1 NCB Abstraction Requirements 

 

In contrast to traditional telephone networks, where end devices are “dumb” and all the complicated communication 
functions are controlled by servers/switches, in IP networks designed based on the end-to-end argument, applications on 
end-hosts can deliver sophisticated communication services. Finding the appropriate level of NCB abstraction for 
applications in IP networks is non-trivial. An abstraction that is too high-level can reduce the flexibility of the applications. 
On the other hand, an abstraction that is too low-level, can significantly complicate the task of the developer, and reduce 
portability. For instance, an abstraction of sockets on top of transport-layer protocols is too primitive, as it does not hide 
the complicacy of signaling protocols etc., which is crucial to multi-party multimedia communication. Furthermore, as 
discussed in section 3, these protocols’ functioning depends on the network infrastructure and conditions, which should be 
hidden to the design of portable applications. As another example,   an abstraction encapsulating telemedicine is too high-
level for NCB, as application-specific logic of telemedicine cannot fit into, say, distance learning. 

We examined a spectrum of collaborative applications (including the ones listed in Figure 1.) and various aspects of 
their development. We extracted the communication issues common to all these applications, and especially those issues 
depending on the underlying network infrastructures and conditions that will affect application portability.  As a result, we 
elaborate below on the key aspects of an abstraction of high-level communication services that can satisfy the needs of 
next generation collaborative applications. 

First, the NCB abstraction must provide a registration mechanism for all users that allows an individual user as well 
as the system to locate users for establishing communication. The NCB interface must also support the basic presence 
functionality so that a user can retrieve and modify his/her current contact-list of individuals that he/she may desire to 
communicate with. 

Second, the abstraction should support the basic concept of a user session. We define a user session of NCB as a 
communication process that involves a number of participants, who can be added or removed dynamically. A user session 
thus represents a “multicast communication space”, within which each participant can send media to all the other session 
participants. Within each user session, the participant should be able to deliver various media on demand, such as sending 
a document in the middle of a voice communication. Further, the NCB abstraction must be capable of supporting multiple 
user sessions simultaneously, which is necessary for sophisticated collaborative applications such as disaster management. 
In response to a disaster, an administrator may initiate several user sessions from an end host to different groups, since 
different groups may have different communication topics, media types (e.g., voice communication in one user session 
and text chat in another), priorities and levels of secrecy. As another example, in a distance learning application, while all 
students participate in a user session of lecturing, one student may establish a private session to another student, asking for 
a document. 

Third, the abstraction must comprehensively encapsulate the details of the networking infrastructure. The abstraction 
should ensure that applications can be ported easily to different end-host hardware and different underlying network 
infrastructure. 

Fourth, the interface should also provide a mechanism to expose certain low-level network and system events (e.g. 
network outage) to applications, since under certain circumstances, the upper-layer application may desire to be notified 
of the communication states, so that appropriate decisions can be made based on its application-dependant communication 
logic. This capability essentially enables development of context-aware applications on top of NCB.  

Finally, the interface must provide users the capability to specify high-level self-management policies to be used as 
guidance inside the NCB for controlling how media is exchanged and delivered. In some applications, the user may desire 
to dynamically control the behavior of NCB in session control and media delivery, according to his/her preferences, by 
specifying high-level policies. The NCB abstraction must be flexible enough to support such requirements.  

 

2.2 NCB Initialization and Presence Interface 

 



 

The NCB initialization and presence interface allows an application to register a user for communication purposes 
with a signaling server. Table 1 presents the proposed interface. 

 

Interface Description 

void launch() 

 

Configures NCB based 
on  a configuration 
file 

void shutdown() Do cleanup for NCB 

boolean login(String 
realm, String user,   
String passwd) 

Login into 
signaling server 

boolean logout() Logout from 
signaling server 

boolean 
add/removeContact(St
ring name,  String 
identifier) 

Add/Remove a new 
contact to/from the 
contact list 

Table 1: NCB Initialization and Presence Interface. 

 

2.3 NCB Session Interface 

 

The session interface provides an application with the ability to create multiple independent user-level 
communication sessions. Each user session can be configured to allow multiple participants and various media delivery on 
demand. The session interface is presented in Table 2. 

 

Interface Description 

int createSession(String 
comments) 

Create new 
communication 
session 

boolean 
destroySession(int sid) 

Destroy an 
existing 
session 

public boolean 
add/remParty(int sid, 
ArrayList parties) 

Add or remove 
new parties to 
a session 

boolean add/remMedia(int 
sid, String media_type, 
String media_location) 

Add or remove a 
new media to a 
session 

boolean 
suspend/resumeMedia(int 
sid , String 
media_type,String 
media_location, String 
direction) 

Suspend or 
resume the data 
transmission 
for a media 

Table 2: NCB Session Interface. 

 

A session ID is returned by the NCB whenever a new session is created with the createSession call from the upper 
layer. The session ID is then used by the application to uniquely identify a user session maintained within the local NCB, 
in the subsequent calls to add/remove participants and media into/from the user session. Each user session may involve 
several types of media. Each media delivery within a session is uniquely identified by the URI (Universal Resource 
Identifiers) of the media. Diverse media types are supported (e.g., real-time audio/video, instant messages, and files). In 



 

addition, NCB supports both two-way (e.g., voice conversation) and one-way media transfer (e.g., file transfer and 
distance learning) with different media formats, as show by the direction parameter.  

 

2.4 NCB Callback Interface 

 

The NCB callback interface in Table 3 provides a mechanism by which the NCB can notify the application of specific 
events of networks, sessions, participants, and media, which are used by the application in a custom fashion. The callback 
interface enhances NCB flexibility for different application logic. As an example, when a "Ringing-tone" signaling 
message is received by the caller, the upper layer may select a presentation (e.g., a flashing icon) rather than an audio ring 
on the speaker. This could be useful when the caller concurrently initiates several sessions in disaster management, or 
connect to several participants in a session of lecturing. 

 

Interface Description 

void 
networkFailure(String 
nwFailure) 

Notification of 
network failure 

void 
contactStatus(String 
user, int status) 

Report the 
presence of a 
contact 

void sessionStatus(int 
sid, String status) 

Report the 
status of a 
session (open, 
close etc.) 

void partyStatus(int 
sid, String user, int 
status) 

Report the 
status of a 
participant 
(busy-tone, 
ring-tone, join, 
etc.) 

void mediaStatus(int 
sid, String media_type, 
String media_URI, int 
status) 

Report the 
status of a 
media in a 
session 

Table 3: NCB Callback Interface. 

 

2.5 NCB Self-Management Interface 

 

NCB internally conducts self-optimization to autonomously adapt media-delivery to the changing network conditions. 
The NCB self-management [10] interface allows upper-layer applications to customize (by specifying high-level policies 
as guidance) NCB adaptive behaviors under specific network and system conditions, based on user or application 
preferences. The interface provides two operations: getPolicyStatus  and applyPolicy, presented in Table 4. 

 

Interface Description 

String 
getPolicyStatus() 

Get the current policy 
status of the NCB 
including the 
parameters related to 
the policy in effect 
and the policy itself 
in XML format 

int 
applyPolicy(String 

Apply the self-
management policy 
specified by the 



 

xmlString) xmlString 

Table 4: NCB Self-Management Interface. 
 

We developed an XML Schema to be able to specify high-level policies in XML documents. At a high-level, a NCB self-
management policy can be interpreted as an “if <condition> then <action>” construct. An example of a self-optimization 
(a sub-category of self-management) policy in XML that is currently supported by the NCB is shown in Figure 2. The 
policy is specific to the session with ID # 24 and it dictates that when NCB detects a low bandwidth condition, it should 
increase the video compression and vice-versa to maintain a steady frame-rate. A specific experiment showing the 
following policy in action and providing further details is presented in Section 4. Examples of other high-level self-
management policies can be found in section 3.2. 
 

                                                   

Figure 2. Example self-optimization policy specification. 
 

We claim that the existing NCB abstraction is not only simple and easy to use, but also provides bare minimum 
middleware support for developing collaborative multimedia applications. NCB provides applications with the flexibility 
of establishing full-featured communication user sessions with controls over the number and identity of participants and 
the nature and timeliness of media exchanged during each session. This minimum interface can already support a variety 
of next-generation collaborative applications.   

 

 

3. NCB Internal Architecture and Design  

 

The challenge for NCB internal architecture is to identify a unified and extensible framework to accommodate (i) 
diverse media with different processing (ii) diverse protocols (iii) diverse communication features and requirements (iv) 
diverse network infrastructures, and (v) diverse traffic conditions.  Below, in section 3.1, we give concrete examples for 
NCB design issues. Section 3.2 details a middleware framework to address the aforementioned design challenges. Section 
3.3 discusses the design choices in the design space. 

 

3.1 NCB Design Issues and Principles 

 

NCB is a client-side middleware to be deployed on end hosts. Below the unified NCB abstraction, the NCB core 
translates a high-level communication task into a series of operations that control and coordinate the underlying 
networking facilities to deliver media to session participants. The NCB core is complex in that it coordinates both the 
control plane (i.e., signaling protocols negotiating the communication) and the data plane (i.e., transport protocols 
delivering media).  

The introduction of NCB will not affect or require changes to the existing protocols and network infrastructures, in 
order not to re-invent the wheel of basic communication.  The communication between peer NCBs may travel through 
various communications infrastructures, such as signaling servers and media gateways, and follows various protocol 
standards (e.g., SIP [9] and RTP [15]). For example, there can be an existing SIP server that authenticates, processes and 

<session sessionID=”24”>   
 

<connectionConstraint 
 condition=”networkBandwidthDecreasing” 
 action=”decreaseVideoResolution” /> 
 

<connectionConstraint  
 condition=”networkBandwidthIncreasing”
 action=”increaseVideoResolution” /> 

 

</session> 
 



 

forwards signaling messages for user registration as well as parameter negotiation (e.g. media to be transmitted, 
encoding/decoding schemes, device capabilities and presence). The IP address of the signaling server and its service port 
for SIP signaling must be configured into the NCB during initialization through the interface listed in section 2.2. In 
addition, there may be a media gateway converting diverse audio/video encoding schemes from different NCBs. The 
multimedia gateway will further mix real-time audio/video signals for multi-party conferencing and then do multicasting. 
Without a mixer, each participant will send his/her audio to all the other participants in duplicated streams [19], each of 
which may have different SIP session ID and RTP session ID. 

However, just like a socket number and its associated port that hide the communication details of packet transmission, 
the NCB user session (see section 2.1) encapsulates the complexity of multiparty, multimedia communication. For 
instance, the communication messages between different NCBs following standard networking protocols may have their 
own notions of low-level sessions or session IDs, and do not contain NCB session IDs. To encapsulate various network 
sessions within one user session for our user-centric middleware, NCB must internally maintain the mapping between the 
NCB session and the sessions of the underlying protocols. In the rest of the paper, the term “session” is used to denote a 
NCB user session, unless otherwise stated.  

The NCB internal architecture must also have an extensible and reusable framework facilitating the integration of 
new communication functionality, new media types, and new networking primitives (e.g., QoS), with different network 
configurations. The NCB is also designed to be self-optimizing, so that the middleware can automatically adapt to 
dynamic network conditions, such as available bandwidth, packet loss rate, and energy consumption.  

 

3.2 NCB Internal Architecture 

 

The internal architecture of NCB is outlined in Figure 3. We briefly describe and discuss each module as follows. In 
addition, a state chart showing a prototype that implements this framework can be found in section 4.  

 

(a) NCB Manager: The NCB Manager is responsible for the initialization and the configuration of the NCB middleware.  
For example, it maintains the signaling server information. Also it is responsible for registering the user information (e.g. 
the current mobile IP address at which it can be reached for signaling messages). Upon receiving an application request 
for creating a new session (at the caller side), or a signaling message INVITE (at the callee side) from a remote user 
negotiating a new conversation, NCB Manager creates a new Session Manager (see below) to handle the new 
communication session. The NCB Manager maintains the list of Session Managers for all active sessions.  In addition, it 
handles states relevant to all sessions that cannot be handled by individual Session Managers. For example, in case of 
multiple user sessions of voice communication, the NCB Manager can activate one voice session and mute all the other 
voice sessions. The application can control the active session through the resumeMedia/suspendMedia interface given 
in section 2.3, thus implementing the call-waiting service. 



 

 

(b) Session Manager: A session manager deals with a single user session. Since the states associated with a session 
include the call status, the participants, and the media transfer, this module further dispatches the tasks to the “Call 
Processing”, “Session Participants”, and “Media Delivery” sub-modules within the Session Manager.  

The Session Participants module keeps the list of active participants of this session.  

The Call Processing module controls, at the level of user sessions, the logic of a session. It converts high-level 
control actions (such as “addParticipant”) of a user session to low-level signaling operations, based on the 
underlying signaling module, which actually carries out the basic signaling. When receiving a signaling message 
indicating that a new participant joins the session, the Call Processing module invokes the Participants module to update 
the participant list, and then reports the newly joined participant to the upper-layer application (through the 
partyStatus callback interface in Table 3). 

The Media Delivery module manages, at the level of user sessions, the transfer of media in a session. It translates an 
“addMedia” call from the application into a number of internal operations. It first relies on the Call Processing module 
to negotiate transmission parameters (e.g. encoding/decoding schemes and QoS parameters) before the actual media 
transmission. It then controls on the Media Processing and Transmission module to actually transmit the media (see 
Figure 4). Some media, such as short messages, can be delivered within the signaling messages (e.g., SIP Messages), and 
thus go through the Signaling module.  
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Figure 4.  Signaling and Media Delivery. 

 

(c) Media Processing and Transmission: The media will be pre-processed before transmission at the sender side, and will 
be post-processed and recovered at the receiver side. The processing and transmission/reception depend largely on the 
heterogeneous media types and network configurations (e.g. with or without conferencing mixer discussed above). The 
Media Processing and Transmission module maintains the supported media types and the corresponding 
encoding/decoding schemes, and carries out media processing and transmission. In contrast to the Media Delivery module, 
this module is fully unaware of the states of a user-level session.  

As shown in Figure 4, the module has different processing paths for real-time media delivery and best-effort data delivery 
(e.g. documents). For best-effort data delivery, everything can be blindly transmitted as a file. In contrast, for multimedia 
content, encoding/decoding is necessary, as media transmission control depends on various the network conditions (e.g. 
available bandwidths) and media content, in order to maximize the user experience. 

For example, with voice conferencing, the participants either rely on a conferencing server mixing the voices from 
different senders, or use meshed audio connections with which each participant establishes audio connections to all the 
other participants [19]. With the latter, this module must mix the received audio signals on the end host (see the “Mixer” 
module in Figure 4). Although the Media Delivery module (user-session dependent) under the Session Manager specifies 
whether mixing is turned on, based on whether a mixing server is available (from the Call Processing module), the actual 
mixing is conducted by the Media Processing and Transmission module. 

 

(d) Signaling: The Signaling module carries out the basic signaling operations according to the signaling protocols, such 
as registration, invite/disconnect a user, media type and parameter negotiation. In contrast to the Call Processing sub-
module under the Session Manager, the Signaling module is unaware of the states of a particular NCB user session, such 
as the mapping between a user session and SIP signaling sessions. On the other hand, the Signaling module encapsulates 
the signaling heterogeneity, such as different signaling protocols (SIP [9] vs. H.323 [7]), the availability of NAT traversal 
[18].  
 

(e) QoS and Self Management: As illustrated in Figure 5, the QoS and Self-Management module autonomously monitors 
and adapts the behavior of the Media Delivery module using some embedded software sensors (for monitoring) and 
effectors (for adaptation), respectively. It can automatically adapt the transmission parameters and modes by seamlessly 
handling network transitioning and by hiding network faults. The self-management behavior of this module follows the 



 

high-level policies specified through the applyPolicy as the guideline from upper-layer applications (see Table 4). For 
example, if the available bandwidth is low, depending user/application preferences specified through high-level policies, 
this module can either (i) instruct the Media Delivery module to use encoding schemes that provide less resolution and 
consume less bandwidth; or (ii) suspend video transmission in order to maintain high-quality voice communication; or (iii) 
slow down (by decreasing socket buffer sizes) file transfer for high-quality video/audio. Some experiments showing the 
benefits of using this self-managing behavior are presented in Section 4. 
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Figure 5: QoS and Self-Management internal architecture. 

 

(f) Presence: A user X may need to know whether his/her friend Y is online in the system, indicated by login of Y at 
his/her signaling server. The user X may rely on mechanisms such as SUBSCRIBE/NOTIFY in SIP [9] to request the 
registration server to “push” the information to the NCB. Since this information does not belong to any established session, 
a separate module, Presence, is introduced for this purpose. 

 

3.3 Discussion 

3.3.1 Design Space  

One design target of NCB internal architecture is to provide an extensible framework for new features. As outlined in 
section 3.1, separating a user-level session from the underlying network-level sessions is an important design choice, 
which is indicated by the horizontal dotted line in Figure 3.  Only the modules above the dotted line are aware of user 
sessions, while all the modules below that line are responsible only for individual network-level sessions. Adding new 
features related to user sessions, such as “getLastMissedCall”, will only change the NCB Manager and the Session 
Manager above the dotted line in Figure 3. On the other hand, adding / changing the underlying signaling protocols (e.g. 
changing from H.323 signaling protocol to SIP, adding NAT traversal, with / without a SIP/Presence server etc.) will only 
affect the Signaling module below the dotted line. This design principle can accommodate heterogeneous networks, and 
make NCB and its supported multimedia collaborative applications more portable. 

While the control plane (signaling etc.) of NCB is extensible, its data plane can also accommodate networking 
heterogeneity. By systematically organizing and classifying media-related operations  into transmission / receiving, pre- / 
post- processing, media I/O, and self-management (as shown in Figure 4), NCB can smoothly manage different cases 
(with / without conferencing mixer; real-time vs. best-effort delivery, different user preferences under various  bandwidth 
availability), as discussed in section 3.2 

We are aware of the importance of other issues, such as security, energy consumption, and mobility support.  For 
example, each NCB session may have different security policies. However, the main focus of this paper is to demonstrate 
an extensible framework that facilitates hiding the communication complexity and heterogeneity, rather than new 
communication functionality. We do not envision any roadblocks to incorporating such advanced features with an 
extensible framework established.   



 

3.3.2 Other Devolvement Factors 

There are other development factors that need to be considered. These factors include (a) Licensing costs. If the use 
of a middleware requires expensive license, it may be more cost-efficient to implement the application from scratch. (b) 
Expected support for the middleware in the future, to deal with possible changes of the protocols and underlying 
networking infrastructure, or to add new functions or protocols. (c) Availability of open-source applications that can be 
tailored for free or for inexpensive license payment. Instead of using a middleware, a developer can modify an existing 
open-source application and integrate it in his/her software. 

 
However, as discussed above, the main focus of this paper is to prove the concept of hiding the communication 

complexity and heterogeneity from high-level design collaborative applications. What we have proposed is an extensible 
framework, from the academic point of view. We envision that this abstraction and framework lays a foundation for the 
development of an open middleware. With an open middleware based on such a framework, it will require zero or low 
licensing cost.  Meanwhile, open-source developers can add new protocols or new networking functions into the 
middleware without bearing in mind high-level application logic. Furthermore, it will significantly facilitate the 
development of open-source collaborative applications, as they can be easily ported to new networking environments. 
Without the separation, incorporating support of a new protocol into various collaborative applications one by one will be 
a tremendous effort. 
 

 
4. Prototype Implementation and Evaluation 

 

In order to evaluate the concept of NCB, we have developed a prototype of NCB in Java, called NCB/J. As the SIP 
protocol is accepted as a standard protocol for Voice over IP, we chose SIP as our signaling protocol. Among the 
implementations of the SIP protocol, we chose the open source JAIN SIP [21] by NIST. Some of the features provided by 
the NCB can be mapped to the existing protocol standard. For example, adding a medium in the middle of a session is 
supported by the SIP re-invite message. Negotiating unidirectional media transfer is implemented by the “send-only” or 
“recv-only” attributes of Session Description Protocol (SDP) [9].  The signaling messages of NCB go through SIP 
Express Router, an open source SIP server (http://www.iptel.org/ser/). For real-time multimedia transmission over IP 
networks, RTP is used as the transport protocol. We developed our prototype based on the JMF [20], which uses RTP. In 
our prototype, files are transferred via TCP connections and instant messages are delivered via SIP Messages. The 
prototype follows the extensible framework discussed in section 3, so that it can easily incorporate new media.  

Figure 6 gives a high-level message sequence chart of user-level session management, which maps the NCB 
architecture shown in Figure 3 into the real implementation. It demonstrates the layer interaction on both sides: the caller 
(Peer A) and the callee (Peer B). The sequence chart covers the session establishment/teardown use-case as well as the 
network failure use-case. Each activity (e.g. sending a message, or notifying the applications) of user-level session 
management is triggered by an event (e.g. receiving a protocol message from the remote peer, or an invocation from 
upper-layer collaborative applications). It enables user-lever sessions by allowing adding/removing of media/participants 
any time during the life cycle of a user session. As discussed at the beginning of section 3, the Session Manager relies on 
Signaling Manager to manage the control-plane and the Media Manager to manage the data plane. 
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Figure 6. Message Sequence Chart of User-Level Session Management 

 

To justify the NCB concept, we developed two types of applications based on NCB: person-to-person voice call, and 
person-to-person video communication (including both video and audio). We compare these against two equivalent open 
source applications developed upon JAIN-SIP/JMF that we downloaded off the Internet: the JAIN-SIP-Applet-Phone 
(https://jain-sip-applet-phone.dev.java.net/) for person–to-person voice call and the SIP-Communicator (https://sip-
communicator.dev.java.net/) for person to person video communication, shown in Table 5. The encoding schemes used 
are G.711 and Motion JPEG, for audio and video, respectively. For each type of application, we did comparative 
experiments to evaluate the NCB. 

Application Based on 
JAIN_SIP/JMF 

Based on NCB 

Person-to-Person  

Voice Call 

JAIN-SIP-Applet-
Phone 

NCB-based Voice 
Call 

Person-to-Person  

Video 
Communication 

SIP-
Communicator 

NCB-based Video 
Communication 

 Table 5: Applications and Development. 

 

The experiments were conducted on high-end desktop computers as well as laptops. The high-end desktop 
computers were equipped with dual Xeon processor, 2GB memory, Gigabit Ethernet adaptors, and PCI-X bus. The 
Windows XP operating system was installed.  The computers were connected to a campus network with high-speed 
routers / switches. The laptops are connected to 802.11 wireless LANs. Experiments were connected on both wired / 
wireless networks. To examine the self-management feature, we also tested the application behaviors with a changing 
available-bandwidth. For these experiments, since it’s hard to control the background traffic, we conducted these 
experiments in dedicated VLANs and use software to limit the available bandwidth (see section 4.3 for details).  



 

 

4.1 Value of High-level NCB Abstraction 

 

We used the lines of code (LOC) metric to compare the above applications, with and without the NCB abstraction. 
The results are shown in Table 6. The development time for Person to Person Voice Call application based on NCB is 
about 5 hours (one developer). The development time for Person to Person Video Communication based on NCB is about 
6 hours (one developer). We did not get the development time for the open source applications. However, based on the 
lines of code comparison with and without NCB, it is reasonable for us to conclude that the development time for 
communication applications without NCB would be significantly longer, probably requiring several days. The 
experiments show that in terms of the lines of code (LOC) metric and the development cycle, the NCB interface makes it 
significantly easier to develop multimedia communication applications. 

Application JAINSIP/J
MF 

 (LOC) 

NCB 

(LOC) 

Person to Person Voice call 9478 435 

Person to Person Video 
Communication 

16784 440 

 

Table 6: Lines of Code comparison for developing applications with/without the NCB abstraction. 

 

4.2 Performance Evaluation 

 

While providing a higher-level abstraction to collaborative applications, NCB could potentially introduce 
performance overhead. Although NCB does not touch the network protocols and infrastructure, it changes the paradigm of 
application development on end hosts. Therefore, it is very important to evaluate the NCB performance on end-hosts. We 
compare the CPU utilization as well as the network utilization of the applications developed with and without NCB. We 
conducted the experiments with both high-end desktops connected to high-speed networks, as well as laptops connected to 
wireless LANs with relatively low bandwidth. Both results demonstrate that NCB can provide the higher-level abstraction 
without compromising the performance.       

For person to person voice call, the average CPU utilization is around 0.237% with the JAIN_SIP-Applet-Phone 
application, and 0.284% with the NCB-based equivalent application. Figure 7 shows the CPU utilization over time 
collected with Windows Performance (the vertical red line is just an artifact of the software). For person to person video 
communication, the average CPU utilization is 35.417% with SIP-Communicator, and 34.912% with the NCB-based 
equivalent application. The CPU utilizations are almost the same. 



 

 

In terms of network utilization, for person to person voice call, the average throughput is 73.8 kbps with the JAIN-
SIP-Applet-Phone, and 73.2 kbps with the NCB-based equivalent application. For person to person video communication, 
the average network bandwidth of SIP-Communicator is 830 kbps, and 670 kbps for the NCB-based application, due to an 
optimized image compression rate of NCB discussed in section 4.3.  

 

4.3 Self-Management Experiments  

 

Next, we demonstrate how NCB supports self-optimization as one aspect of self-management. The high-level policy 
from the upper-layer application reflects the user preferences: if the network bandwidth changes, then adapt the video 
compression rate and hence the image resolution. This policy implies that the frame rate should be stable (in this case 13 
fps). This high-level policy is expressed using the XML policy string as shown in Figure 2. The throughput of video 
traffic, limited by the available bandwidth, is the product of the frame-rate and the frame-size (which affects the image 
resolution). The latter is further determined by the image compression rate. Without the self-managing policy at the sender, 
a decreased bandwidth will cause packet losses, and significantly reduce the frame-rate at the receiver side. With the 
above policy, the user can expresses his/her preference to maintain the stable frame-rate at the expense of the frame-size 
and the image resolution: if the available bandwidth decreases, increase the image compression rate to reduce the frame-
size; if the available bandwidth increases, decrease the compression rate to increase the image resolution. The 
compression rate is controlled by setting quantization parameters during the encoding process. 

 

Figure 8: The network bandwidth (deep blue line) and video stream (light blue line) over time. 

 

To simulate the change of bandwidth, we use NetPeeker (http://www.net-peeker.com/), a network speed limiter, to 
control the traffic. With NetPeeker, we simulate three network capacities: 1100KB/s, 500KB/s, and 100KB/s. The results 
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  (a) SIP-Communicator                                                           (b) NCB-based software. 
 

Figure 7. CPU Utilization with Person-to-Person Video Communication 



 

of this experiment are illustrated in Figure 8. The deep blue line shows the network bandwidth and the light blue line 
represents the sending rates of video stream. As Figure 8 shows, NCB dynamically adjusts its video sending rates based 
on the change of available bandwidth. 

Finally, we performed the same experiment with the SIP-Communicator and compared its receiver-side frame-rate 
with an equivalent NCB-based application, shown in Figure 9. The red O symbols represent the frame rates for the SIP-
Communicator at different network bandwidths while the blue X symbols represent the frame rates of NCB-based 
implementation. With the configured policy, the frame rate of NCB is stable when the network bandwidth decreases, due 
to the increased compression rate. With a fixed compression rate, the receiving frame rate of SIP- Communicator 
decreases and sometimes the video freezes, due to packet losses. Without the policy, the behavior of NCB is the same as 
SIP-Communicator. 

                                                

Note that it’s not that self-management cannot be built into the non-NCB applications developed with a stovepipe 
approach. Rather, based on NCB, no-matter the application logic, developers can simply pass the policy shown in Figure 2 
to achieve the self-management without changing the underlying code. That is, NCB makes the feature of self-
management more reusable. 

 

4.4 NCB as a Layer in CVM 

 

As mentioned in the introduction, NCB realizes the lowest layer of abstraction inside the CVM layered architecture [6]. 
To evaluate the effectiveness of NCB, we have incorporated a Java-based implementation of NCB (NCB/J) in the CVM 
prototype.  

Figure 10 shows two screenshots of CVM prototype that illustrate how easily a Telemedicine application can be made 
readily available through the CVM generic Web-based GUI and model-driven schema. This figure captures a scenario 
within which Mary loads the Telemedicine communication schema (which contains the application-dependent 
collaborative logic) from the schema repository, and selects the two participants (Eric and John) from her Address Book 
(Figure 10 (a)).  The media used in the connection are selected from the Media Library (represented by icons on the top 
right of Figure 10 (b)), and the two JPG files (“Heart_Scan.jpg” and “X_Ray1.jpg”), are dragged into the Connection Box 
by Eric during the conversation (Figure 10 (b)). The actual communication delivery is performed by the underlying 
application-independent NCB/J. 

The file sharing service of this Telemedicine application uses the SCP protocol, while the Web GUI uses the HTTP 
protocol (see Figure 3), in contrast to the SIP/RTP protocol used in voice communication. The extensible media 
processing framework discussed in Figure 4 internally translates different medium requests into different pre-/post- 

Figure 9: Frame rate changes with network 
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processing and transmission operations, based on the underlying protocols. Hence, NCB can integrate both real-time 
communication and best-effort delivery under the unified abstraction of user-level session presented in section 2. 

 

      

(a) Overview of active communications.      

 

  

(b) Details of a particular active connection. 
 

Figure 10. Screenshots of CVM prototype. 

 

5. Related Work  

 

Prior work related to NCB can be categorized into three major groups. In the rest of this section, we briefly introduce 
projects in each category and discuss how they are related to NCB. 

 

Multimedia Communication Applications. MSN Messenger, Jabber [23], Google Talk [24] and Skype [25] are among 
the numerous multimedia communication applications that are being widely used. These applications provide a one-size-
fits-all solution to multimedia communication and fail when there is a need for more specialized communication. Such 
generic multimedia applications can be developed rapidly using NCB without worrying about the complexity of network-
level programming, as shown in section 4.4. 

There are other projects including Polycom [26], RADVision [27], and Access Grid [28] that propose various IP-
based conferencing services. We consider these approaches as complementary to NCB and we plan to benefit from some 
of their services. For example, we plan to use the VRVS reflectors to provide scalability to NCB. 



 

In addition, most of these applications are non-open applications with license requests. We envision that the open 
architecture NCB can promote the development of an open-source and portable middleware.  Therefore new 
communication features can be added into this customizable middleware without knowing the future application logic. 

 

Protocols, APIs, and Software Frameworks. TCP/UDP socket is a low-level abstraction that we have already compared 
in subsections 2.1 and 3.1. SIP [9] and H.323 [7] are among the signaling protocols for Internet telephony, while RTP [15] 
provides transport functions for transmitting real-time audio and video. Java Media Framework (JMF) [20] is a library for 
audio and video delivery. JAIN SIP [21] is a standardized Java interface to SIP. The low-level APIs of these 
communication libraries are still significantly complex to use, and do not encapsulate the concept of user-level sessions 
(discussed in section 2.1) for multimedia multi-party communication. In fact, NCB internally uses these protocols and 
frameworks to implement its high-level abstractions. Furthermore, these low-level APIs do not hide the complexity and 
the heterogeneity of underlying networks. 

The Java Telephony API [29] is a high-level API for traditional telephony applications, and does not support 
multimedia communication applications with sophisticated communication needs. [2] discusses open software 
architectures for IP-based voice communication. Parlay [22] is an interface that enables the rapid creation of 
telecommunication services. These frameworks ([2, 22]) mostly address server-side architectures. The server-side 
architecture has different concerns than the client-side middleware, which is the focus of NCB. Furthermore, in contrast to 
traditional telephone networks, where end devices are “dumb”, in IP networks, end-hosts are capable of sophisticated 
collaborative logic. Therefore, client-side middle development is as important and complicated. 

There are a number of other communication middleware proposed recently [30, 31, 32, 33]. [30] focuses on the 
object-oriented design of middleware purely from the perspective of software engineering, without considering issues in 
multimedia multi-party communication.  While [31]’s scope is disaster management in mobile networks, [32]’s scope is 
on pipelined communication in cluster computing.  [33] improves the efficiency of group communication. None of theses 
works have a general scope on the middleware development for the next-generation multimedia telecommunication in 
collaborative applications.  

 

Reflective and adaptive middleware and toolkits. In order to provide self-management in software, two general 
approaches have been used: parameter and compositional adaptation [13]. Parameter adaptation involves the 
modification of variables that determine program behavior [5, 8, 11, 17]. A weakness of parameter adaptation is that it 
cannot adopt algorithms or components left unimplemented during the original design and construction of an application. 
That is, parameters can be tuned or an application can be directed to use a different existing strategy, but strategies 
implemented after the construction of the application cannot be adopted. In contrast, compositional adaptation results in 
the exchange of algorithmic or structural parts of the system with ones that improve a program’s fit to its current 
environment [1, 4, 12, 14].  

In its internal design, NCB employs both parameterized and compositional adaptation. Instead of reinventing the 
wheel, NCB incorporates existing adaptive and reflective middleware toolkits to provide self-management using only 
high-level policies reflecting user or application preferences. ACE, Ensemble, and Open ORB are among the projects that 
we closely follow to incorporate some of their services inside NCB. ACE [16] is a real-time object-oriented framework 
written in C++ that wraps many OS services and provides a variety of communication-related patterns that can be 
employed by NCB. Ensemble [14] is a groupware communication toolkit that supports protocol stacks constructed from 
fine-grained components, called micro-protocols. We plan to leverage these micro-protocols to provide the desired 
behavior, with respect to the high-level policies, for NCB at runtime. OpenORB [3] focuses on the role of computational 
reflection in middleware for mobile multimedia applications that can be dynamically adapted in response to the 
environmental changes. NCB is also a reflective middleware, but does not focus only on mobile computing. 

 

6. Conclusion and Future work 

 

We have proposed NCB, a unified high-level abstraction that separates the complexities of network-level 
communication control and media delivery from the application-dependent collaborative logic. NCB facilitates rapid 
creation of portable collaborative multimedia applications.  We have identified the requirements of the NCB abstraction 



 

required for the class of multi-party and multimedia communication applications. The design of NCB is based on an 
extensible and self-managing software framework. In the future, we plan to enhance the extensibility, reusability, and self-
management of NCB. 
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