

A User-Centric Network Communication Broker for

Multimedia Collaborative Computing

Chi Zhang1, S. Masoud Sadjadi2, Weixiang Sun3, Raju Rangaswami2, Yi Deng4

1Juniper Networks

Sunnyvale, CA, USA

chizhang@juniper.net

2School of Computing and Information Sciences

Florida International University

Miami, FL, USA

{sadjadi, raju, deng}@cis.fiu.edu

3Amazon

Seattle, WA, USA

weixiang@amazon.com

4College of Computing and Informatics

University of North Carolina at Charlotte

Charlotte, NC, USA

Yi.Deng@uncc.edu

Abstract

The development of collaborative multimedia applications today follows a vertical development approach, where
each application is built on top of low-level network abstractions such as the socket interface. This stovepipe development
process is a major inhibitor that drives up the cost of development and slows down the innovation pace of new
generations of communication applications. In this paper, we propose a network communication broker (NCB) that
provides a unified higher-level abstraction for the class of multimedia collaborative applications. We demonstrate how
NCB encapsulates the complexity of network-level communication control and media delivery, and expedites the
development of applications with various communication logics. We investigate the minimum necessary requirements for
the NCB abstraction. We identify that the concept of user-level sessions involving multiple parties and multiple media, is
critical to designing a reusable NCB to facilitate next-generation multimedia communications. Furthermore, the internal
design of NCB decouples the user-level sessions from network-level sessions, so that the NCB framework can
accommodate heterogeneous networks, and applications can be easily ported to new network environments. In addition,
we demonstrate how the extensible and self-managing design of NCB supports dynamic adaptation in response to changes
in network conditions and user requirements.

1. Introduction

The convergence of various multimedia communications including voice, video and data over IP networks during
the past decade has resulted in the emergence of a wide range of collaborative applications including Scientific
Collaboration, Video Conferencing, Voice over IP (VoIP), and Instant Messaging, among others. These collaborative
applications have the potential to dramatically impact our everyday life. However, the fast pace growth of innovations has
been restrained by the stovepipe approach currently employed in application development.

Today, the development of domain-specific collaborative applications is both time-consuming and error-prone
because the low-level communication services provided by the existing systems and networks are primitive and often
heterogeneous. Multimedia collaborative applications are typically built on top of low-level network abstractions such as
TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. Further, the underlying
network configurations can also vary significantly which can reduce portability within applications developed using a
vertical stovepipe approach.

What is lacking is a systematic approach to design and development across high-level collaborative applications. In
[6], we introduced Communication Virtual Machine (CVM) that represents a paradigm shift in how a collaborative
application is conceived and delivered. In CVM, general-purpose or domain-specific communication needs are specified
in a model, called communication schema, independent of device types and underlying network configuration. Such a
model is instantiated, negotiated, synthesized and executed, by a fully automated process, to satisfy the users’
communication needs. Under this model, a communication modeling language is proposed to provide an intuitive graphic
form for users to model declaratively their communication requirements. A synthesis engine is further responsible for
automatically synthesizing user communication sessions. This model-driven communication is supported by the CVM
layered architecture. The layered architecture provides separation of major concerns such as modeling application-
dependent collaboration logic, automatic generation of scripts to drive the collaboration logic, and the application-
independent basic communication service reusable by various applications (i.e. network communication broker to
interface with the underlying network infrastructure).

As the basic application-independent communication service that actually delivers the communication is fundamental
not only to the CVM architecture but also to the development of any collaborative application, we focus on the abstraction,
internal architecture, and implementation of this layer in this paper, based on our early primary work in [34]. We propose
Network Communication Broker (NCB), a user-centric middleware that encapsulates the networking complexity and
heterogeneity of basic multimedia and multi-party communication for upper-layer collaborative applications. As
illustrated in Figure 1, NCB provides a unified user-centric communication service to diverse collaborative
communication applications ranging from a simple phone call and video conferencing to specialized communication
applications like scientific collaboration, disaster management, and telemedicine. Under this unified high-level abstraction,
internally NCB coordinates the underlying heterogeneous network infrastructure, systems and libraries to ensure that basic
communication tasks are carried out smoothly. The key innovation of the NCB concept is a horizontal abstraction that
separates and isolates the complexities of network-level communication control and media delivery from the diversity of
application-dependent collaboration logic.

Since the NCB provides a service of user-centric multimedia collaboration, we identify the scope of its encapsulation
more specifically to multi-party multimedia telecommunication. We summarize the values of this unified NCB
encapsulation as follows:

 The unified abstraction by itself is generic enough to provide basic user-centric communication services reusable by a
wide variety of collaborative applications.

 Applications, developed based on NCB, are transparent to the details of underlying network protocols and
infrastructure. The high-level application-dependent collaboration logic therefore becomes relatively simple to build.

 NCB hides network heterogeneity from the applications so that applications can be easily ported to new network
environments.

In this paper, we investigate the minimum necessary requirements for the NCB to be able to support complex
collaboration logic involving multiple parties and multiple media and to provide an interface that exemplifies this
abstraction. In terms of approaches, the paper has made two novel contributions. We first identified that the concept of
user-level sessions (vs. network-level sessions adopted by the existing protocols) is critical to designing a flexible NCB
interface to support various next-generation collaborative communications. The internal design of NCB separates the user-
level sessions and network-level sessions, such that the NCB framework can accommodate heterogeneous networks.

Furthermore, we demonstrate how the extensible and self-managing design of NCB supports dynamic adaptation in
response to changes in network conditions and user requirements. To be more specific, NCB contains a self-management
module that can conduct self-optimization to autonomously adapt media-delivery to the changing network conditions (e.g.
bandwidth). Moreover, the adaptive behavior of the middleware can be defined according to the preferences of users or
applications, specified as high-level policies.

The rest of this paper is organized as follows. In Section 2, we identify the set of requirements for the NCB
abstraction and present a minimal interface for NCB that reflects these requirements. In Section 3, we overview NCB’s
internal architecture and design. In Section 4, we introduce the prototype implementation of NCB in Java, as well as
experiments and findings. Section 5 presents related work and Section 6 provides some concluding remarks.

2. NCB Abstraction and Interface

Application-dependent
Communication Logic

Signaling (e.g., SIP)

NNCCBB:: NNeettwwoorrkk CCoommmmuunniiccaattiioonn BBrrookkeerr

TCP/UDP Sockets Real-Time Media Delivery (e.g., RTP)

Application-Independent
Communication Service

Phone
Call Video

Conferencing. Scientific
Collaboration Instant

Messaging Distance
Learning

Disaster
Management Telemedicine

Application

NCB API

Network-Based Communication
Control and Media Delivery

Device Drivers System Libraries

Figure 1: NCB separates network communication complexity from application collaboration logic.

In this section, first, we identify the set of necessary requirements from the perspective of next-generation
collaborative applications. We then present an interface that reflects the requirements.

2.1 NCB Abstraction Requirements

In contrast to traditional telephone networks, where end devices are “dumb” and all the complicated communication
functions are controlled by servers/switches, in IP networks designed based on the end-to-end argument, applications on
end-hosts can deliver sophisticated communication services. Finding the appropriate level of NCB abstraction for
applications in IP networks is non-trivial. An abstraction that is too high-level can reduce the flexibility of the applications.
On the other hand, an abstraction that is too low-level, can significantly complicate the task of the developer, and reduce
portability. For instance, an abstraction of sockets on top of transport-layer protocols is too primitive, as it does not hide
the complicacy of signaling protocols etc., which is crucial to multi-party multimedia communication. Furthermore, as
discussed in section 3, these protocols’ functioning depends on the network infrastructure and conditions, which should be
hidden to the design of portable applications. As another example, an abstraction encapsulating telemedicine is too high-
level for NCB, as application-specific logic of telemedicine cannot fit into, say, distance learning.

We examined a spectrum of collaborative applications (including the ones listed in Figure 1.) and various aspects of
their development. We extracted the communication issues common to all these applications, and especially those issues
depending on the underlying network infrastructures and conditions that will affect application portability. As a result, we
elaborate below on the key aspects of an abstraction of high-level communication services that can satisfy the needs of
next generation collaborative applications.

First, the NCB abstraction must provide a registration mechanism for all users that allows an individual user as well
as the system to locate users for establishing communication. The NCB interface must also support the basic presence
functionality so that a user can retrieve and modify his/her current contact-list of individuals that he/she may desire to
communicate with.

Second, the abstraction should support the basic concept of a user session. We define a user session of NCB as a
communication process that involves a number of participants, who can be added or removed dynamically. A user session
thus represents a “multicast communication space”, within which each participant can send media to all the other session
participants. Within each user session, the participant should be able to deliver various media on demand, such as sending
a document in the middle of a voice communication. Further, the NCB abstraction must be capable of supporting multiple
user sessions simultaneously, which is necessary for sophisticated collaborative applications such as disaster management.
In response to a disaster, an administrator may initiate several user sessions from an end host to different groups, since
different groups may have different communication topics, media types (e.g., voice communication in one user session
and text chat in another), priorities and levels of secrecy. As another example, in a distance learning application, while all
students participate in a user session of lecturing, one student may establish a private session to another student, asking for
a document.

Third, the abstraction must comprehensively encapsulate the details of the networking infrastructure. The abstraction
should ensure that applications can be ported easily to different end-host hardware and different underlying network
infrastructure.

Fourth, the interface should also provide a mechanism to expose certain low-level network and system events (e.g.
network outage) to applications, since under certain circumstances, the upper-layer application may desire to be notified
of the communication states, so that appropriate decisions can be made based on its application-dependant communication
logic. This capability essentially enables development of context-aware applications on top of NCB.

Finally, the interface must provide users the capability to specify high-level self-management policies to be used as
guidance inside the NCB for controlling how media is exchanged and delivered. In some applications, the user may desire
to dynamically control the behavior of NCB in session control and media delivery, according to his/her preferences, by
specifying high-level policies. The NCB abstraction must be flexible enough to support such requirements.

2.2 NCB Initialization and Presence Interface

The NCB initialization and presence interface allows an application to register a user for communication purposes
with a signaling server. Table 1 presents the proposed interface.

Interface Description

void launch()

Configures NCB based
on a configuration
file

void shutdown() Do cleanup for NCB

boolean login(String
realm, String user,
String passwd)

Login into
signaling server

boolean logout() Logout from
signaling server

boolean
add/removeContact(St
ring name, String
identifier)

Add/Remove a new
contact to/from the
contact list

Table 1: NCB Initialization and Presence Interface.

2.3 NCB Session Interface

The session interface provides an application with the ability to create multiple independent user-level
communication sessions. Each user session can be configured to allow multiple participants and various media delivery on
demand. The session interface is presented in Table 2.

Interface Description

int createSession(String
comments)

Create new
communication
session

boolean
destroySession(int sid)

Destroy an
existing
session

public boolean
add/remParty(int sid,
ArrayList parties)

Add or remove
new parties to
a session

boolean add/remMedia(int
sid, String media_type,
String media_location)

Add or remove a
new media to a
session

boolean
suspend/resumeMedia(int
sid , String
media_type,String
media_location, String
direction)

Suspend or
resume the data
transmission
for a media

Table 2: NCB Session Interface.

A session ID is returned by the NCB whenever a new session is created with the createSession call from the upper
layer. The session ID is then used by the application to uniquely identify a user session maintained within the local NCB,
in the subsequent calls to add/remove participants and media into/from the user session. Each user session may involve
several types of media. Each media delivery within a session is uniquely identified by the URI (Universal Resource
Identifiers) of the media. Diverse media types are supported (e.g., real-time audio/video, instant messages, and files). In

addition, NCB supports both two-way (e.g., voice conversation) and one-way media transfer (e.g., file transfer and
distance learning) with different media formats, as show by the direction parameter.

2.4 NCB Callback Interface

The NCB callback interface in Table 3 provides a mechanism by which the NCB can notify the application of specific
events of networks, sessions, participants, and media, which are used by the application in a custom fashion. The callback
interface enhances NCB flexibility for different application logic. As an example, when a "Ringing-tone" signaling
message is received by the caller, the upper layer may select a presentation (e.g., a flashing icon) rather than an audio ring
on the speaker. This could be useful when the caller concurrently initiates several sessions in disaster management, or
connect to several participants in a session of lecturing.

Interface Description

void
networkFailure(String
nwFailure)

Notification of
network failure

void
contactStatus(String
user, int status)

Report the
presence of a
contact

void sessionStatus(int
sid, String status)

Report the
status of a
session (open,
close etc.)

void partyStatus(int
sid, String user, int
status)

Report the
status of a
participant
(busy-tone,
ring-tone, join,
etc.)

void mediaStatus(int
sid, String media_type,
String media_URI, int
status)

Report the
status of a
media in a
session

Table 3: NCB Callback Interface.

2.5 NCB Self-Management Interface

NCB internally conducts self-optimization to autonomously adapt media-delivery to the changing network conditions.
The NCB self-management [10] interface allows upper-layer applications to customize (by specifying high-level policies
as guidance) NCB adaptive behaviors under specific network and system conditions, based on user or application
preferences. The interface provides two operations: getPolicyStatus and applyPolicy, presented in Table 4.

Interface Description

String
getPolicyStatus()

Get the current policy
status of the NCB
including the
parameters related to
the policy in effect
and the policy itself
in XML format

int
applyPolicy(String

Apply the self-
management policy
specified by the

xmlString) xmlString

Table 4: NCB Self-Management Interface.

We developed an XML Schema to be able to specify high-level policies in XML documents. At a high-level, a NCB self-
management policy can be interpreted as an “if <condition> then <action>” construct. An example of a self-optimization
(a sub-category of self-management) policy in XML that is currently supported by the NCB is shown in Figure 2. The
policy is specific to the session with ID # 24 and it dictates that when NCB detects a low bandwidth condition, it should
increase the video compression and vice-versa to maintain a steady frame-rate. A specific experiment showing the
following policy in action and providing further details is presented in Section 4. Examples of other high-level self-
management policies can be found in section 3.2.

Figure 2. Example self-optimization policy specification.

We claim that the existing NCB abstraction is not only simple and easy to use, but also provides bare minimum
middleware support for developing collaborative multimedia applications. NCB provides applications with the flexibility
of establishing full-featured communication user sessions with controls over the number and identity of participants and
the nature and timeliness of media exchanged during each session. This minimum interface can already support a variety
of next-generation collaborative applications.

3. NCB Internal Architecture and Design

The challenge for NCB internal architecture is to identify a unified and extensible framework to accommodate (i)
diverse media with different processing (ii) diverse protocols (iii) diverse communication features and requirements (iv)
diverse network infrastructures, and (v) diverse traffic conditions. Below, in section 3.1, we give concrete examples for
NCB design issues. Section 3.2 details a middleware framework to address the aforementioned design challenges. Section
3.3 discusses the design choices in the design space.

3.1 NCB Design Issues and Principles

NCB is a client-side middleware to be deployed on end hosts. Below the unified NCB abstraction, the NCB core
translates a high-level communication task into a series of operations that control and coordinate the underlying
networking facilities to deliver media to session participants. The NCB core is complex in that it coordinates both the
control plane (i.e., signaling protocols negotiating the communication) and the data plane (i.e., transport protocols
delivering media).

The introduction of NCB will not affect or require changes to the existing protocols and network infrastructures, in
order not to re-invent the wheel of basic communication. The communication between peer NCBs may travel through
various communications infrastructures, such as signaling servers and media gateways, and follows various protocol
standards (e.g., SIP [9] and RTP [15]). For example, there can be an existing SIP server that authenticates, processes and

<session sessionID=”24”>

<connectionConstraint
 condition=”networkBandwidthDecreasing”
 action=”decreaseVideoResolution” />

<connectionConstraint
 condition=”networkBandwidthIncreasing”
 action=”increaseVideoResolution” />

</session>

forwards signaling messages for user registration as well as parameter negotiation (e.g. media to be transmitted,
encoding/decoding schemes, device capabilities and presence). The IP address of the signaling server and its service port
for SIP signaling must be configured into the NCB during initialization through the interface listed in section 2.2. In
addition, there may be a media gateway converting diverse audio/video encoding schemes from different NCBs. The
multimedia gateway will further mix real-time audio/video signals for multi-party conferencing and then do multicasting.
Without a mixer, each participant will send his/her audio to all the other participants in duplicated streams [19], each of
which may have different SIP session ID and RTP session ID.

However, just like a socket number and its associated port that hide the communication details of packet transmission,
the NCB user session (see section 2.1) encapsulates the complexity of multiparty, multimedia communication. For
instance, the communication messages between different NCBs following standard networking protocols may have their
own notions of low-level sessions or session IDs, and do not contain NCB session IDs. To encapsulate various network
sessions within one user session for our user-centric middleware, NCB must internally maintain the mapping between the
NCB session and the sessions of the underlying protocols. In the rest of the paper, the term “session” is used to denote a
NCB user session, unless otherwise stated.

The NCB internal architecture must also have an extensible and reusable framework facilitating the integration of
new communication functionality, new media types, and new networking primitives (e.g., QoS), with different network
configurations. The NCB is also designed to be self-optimizing, so that the middleware can automatically adapt to
dynamic network conditions, such as available bandwidth, packet loss rate, and energy consumption.

3.2 NCB Internal Architecture

The internal architecture of NCB is outlined in Figure 3. We briefly describe and discuss each module as follows. In
addition, a state chart showing a prototype that implements this framework can be found in section 4.

(a) NCB Manager: The NCB Manager is responsible for the initialization and the configuration of the NCB middleware.
For example, it maintains the signaling server information. Also it is responsible for registering the user information (e.g.
the current mobile IP address at which it can be reached for signaling messages). Upon receiving an application request
for creating a new session (at the caller side), or a signaling message INVITE (at the callee side) from a remote user
negotiating a new conversation, NCB Manager creates a new Session Manager (see below) to handle the new
communication session. The NCB Manager maintains the list of Session Managers for all active sessions. In addition, it
handles states relevant to all sessions that cannot be handled by individual Session Managers. For example, in case of
multiple user sessions of voice communication, the NCB Manager can activate one voice session and mute all the other
voice sessions. The application can control the active session through the resumeMedia/suspendMedia interface given
in section 2.3, thus implementing the call-waiting service.

(b) Session Manager: A session manager deals with a single user session. Since the states associated with a session
include the call status, the participants, and the media transfer, this module further dispatches the tasks to the “Call
Processing”, “Session Participants”, and “Media Delivery” sub-modules within the Session Manager.

The Session Participants module keeps the list of active participants of this session.

The Call Processing module controls, at the level of user sessions, the logic of a session. It converts high-level
control actions (such as “addParticipant”) of a user session to low-level signaling operations, based on the
underlying signaling module, which actually carries out the basic signaling. When receiving a signaling message
indicating that a new participant joins the session, the Call Processing module invokes the Participants module to update
the participant list, and then reports the newly joined participant to the upper-layer application (through the
partyStatus callback interface in Table 3).

The Media Delivery module manages, at the level of user sessions, the transfer of media in a session. It translates an
“addMedia” call from the application into a number of internal operations. It first relies on the Call Processing module
to negotiate transmission parameters (e.g. encoding/decoding schemes and QoS parameters) before the actual media
transmission. It then controls on the Media Processing and Transmission module to actually transmit the media (see
Figure 4). Some media, such as short messages, can be delivered within the signaling messages (e.g., SIP Messages), and
thus go through the Signaling module.

Session Manager

Network Sessions

User Sessions

NCB Unified A pplication P rogramming I nterface

Signaling

NCB Manager

Signaling Protocols
(e.g., SIP)

Media
Delivery

Media Processing & Transmission

Networking Interface to the Underlying IP Networks and Protocols
Real - Time Protocols

(e.g., RTP)

Best Effort Protocols
(e.g., SCP, HTTP)

TCP /UDP Sockets

Presence

Participants Call
Processing

QoS & Self -
Management

Media Processing & Transmission Modules

Configure and Control
Send short messages

Add/Remove/Pause Media
Negotiate Parameters Media

Delivery
QoS &

Self-Management

Mixer

Fetch Media

Encode Media
and Sync.

Transmit
Media

Receive
Media &
Feedback

Decode Media
and Sync.

Play Media

Read File

Send File

Store File

Receive File

Call
Processing

Real-Time Media Best-Effort Media

Signaling

Figure 4. Signaling and Media Delivery.

(c) Media Processing and Transmission: The media will be pre-processed before transmission at the sender side, and will
be post-processed and recovered at the receiver side. The processing and transmission/reception depend largely on the
heterogeneous media types and network configurations (e.g. with or without conferencing mixer discussed above). The
Media Processing and Transmission module maintains the supported media types and the corresponding
encoding/decoding schemes, and carries out media processing and transmission. In contrast to the Media Delivery module,
this module is fully unaware of the states of a user-level session.

As shown in Figure 4, the module has different processing paths for real-time media delivery and best-effort data delivery
(e.g. documents). For best-effort data delivery, everything can be blindly transmitted as a file. In contrast, for multimedia
content, encoding/decoding is necessary, as media transmission control depends on various the network conditions (e.g.
available bandwidths) and media content, in order to maximize the user experience.

For example, with voice conferencing, the participants either rely on a conferencing server mixing the voices from
different senders, or use meshed audio connections with which each participant establishes audio connections to all the
other participants [19]. With the latter, this module must mix the received audio signals on the end host (see the “Mixer”
module in Figure 4). Although the Media Delivery module (user-session dependent) under the Session Manager specifies
whether mixing is turned on, based on whether a mixing server is available (from the Call Processing module), the actual
mixing is conducted by the Media Processing and Transmission module.

(d) Signaling: The Signaling module carries out the basic signaling operations according to the signaling protocols, such
as registration, invite/disconnect a user, media type and parameter negotiation. In contrast to the Call Processing sub-
module under the Session Manager, the Signaling module is unaware of the states of a particular NCB user session, such
as the mapping between a user session and SIP signaling sessions. On the other hand, the Signaling module encapsulates
the signaling heterogeneity, such as different signaling protocols (SIP [9] vs. H.323 [7]), the availability of NAT traversal
[18].

(e) QoS and Self Management: As illustrated in Figure 5, the QoS and Self-Management module autonomously monitors
and adapts the behavior of the Media Delivery module using some embedded software sensors (for monitoring) and
effectors (for adaptation), respectively. It can automatically adapt the transmission parameters and modes by seamlessly
handling network transitioning and by hiding network faults. The self-management behavior of this module follows the

high-level policies specified through the applyPolicy as the guideline from upper-layer applications (see Table 4). For
example, if the available bandwidth is low, depending user/application preferences specified through high-level policies,
this module can either (i) instruct the Media Delivery module to use encoding schemes that provide less resolution and
consume less bandwidth; or (ii) suspend video transmission in order to maintain high-quality voice communication; or (iii)
slow down (by decreasing socket buffer sizes) file transfer for high-quality video/audio. Some experiments showing the
benefits of using this self-managing behavior are presented in Section 4.

QoS and Self-Management

Media Delivery

Monitor

Analyze

Sensors

Execute

Plan

Effectors

A
ut

on
om

ic
M

an
ag

er
M

an
ag

ed
E

le
m

en
t

getStatus applyPolicy

Knowledge

Figure 5: QoS and Self-Management internal architecture.

(f) Presence: A user X may need to know whether his/her friend Y is online in the system, indicated by login of Y at
his/her signaling server. The user X may rely on mechanisms such as SUBSCRIBE/NOTIFY in SIP [9] to request the
registration server to “push” the information to the NCB. Since this information does not belong to any established session,
a separate module, Presence, is introduced for this purpose.

3.3 Discussion

3.3.1 Design Space

One design target of NCB internal architecture is to provide an extensible framework for new features. As outlined in
section 3.1, separating a user-level session from the underlying network-level sessions is an important design choice,
which is indicated by the horizontal dotted line in Figure 3. Only the modules above the dotted line are aware of user
sessions, while all the modules below that line are responsible only for individual network-level sessions. Adding new
features related to user sessions, such as “getLastMissedCall”, will only change the NCB Manager and the Session
Manager above the dotted line in Figure 3. On the other hand, adding / changing the underlying signaling protocols (e.g.
changing from H.323 signaling protocol to SIP, adding NAT traversal, with / without a SIP/Presence server etc.) will only
affect the Signaling module below the dotted line. This design principle can accommodate heterogeneous networks, and
make NCB and its supported multimedia collaborative applications more portable.

While the control plane (signaling etc.) of NCB is extensible, its data plane can also accommodate networking
heterogeneity. By systematically organizing and classifying media-related operations into transmission / receiving, pre- /
post- processing, media I/O, and self-management (as shown in Figure 4), NCB can smoothly manage different cases
(with / without conferencing mixer; real-time vs. best-effort delivery, different user preferences under various bandwidth
availability), as discussed in section 3.2

We are aware of the importance of other issues, such as security, energy consumption, and mobility support. For
example, each NCB session may have different security policies. However, the main focus of this paper is to demonstrate
an extensible framework that facilitates hiding the communication complexity and heterogeneity, rather than new
communication functionality. We do not envision any roadblocks to incorporating such advanced features with an
extensible framework established.

3.3.2 Other Devolvement Factors

There are other development factors that need to be considered. These factors include (a) Licensing costs. If the use
of a middleware requires expensive license, it may be more cost-efficient to implement the application from scratch. (b)
Expected support for the middleware in the future, to deal with possible changes of the protocols and underlying
networking infrastructure, or to add new functions or protocols. (c) Availability of open-source applications that can be
tailored for free or for inexpensive license payment. Instead of using a middleware, a developer can modify an existing
open-source application and integrate it in his/her software.

However, as discussed above, the main focus of this paper is to prove the concept of hiding the communication

complexity and heterogeneity from high-level design collaborative applications. What we have proposed is an extensible
framework, from the academic point of view. We envision that this abstraction and framework lays a foundation for the
development of an open middleware. With an open middleware based on such a framework, it will require zero or low
licensing cost. Meanwhile, open-source developers can add new protocols or new networking functions into the
middleware without bearing in mind high-level application logic. Furthermore, it will significantly facilitate the
development of open-source collaborative applications, as they can be easily ported to new networking environments.
Without the separation, incorporating support of a new protocol into various collaborative applications one by one will be
a tremendous effort.

4. Prototype Implementation and Evaluation

In order to evaluate the concept of NCB, we have developed a prototype of NCB in Java, called NCB/J. As the SIP
protocol is accepted as a standard protocol for Voice over IP, we chose SIP as our signaling protocol. Among the
implementations of the SIP protocol, we chose the open source JAIN SIP [21] by NIST. Some of the features provided by
the NCB can be mapped to the existing protocol standard. For example, adding a medium in the middle of a session is
supported by the SIP re-invite message. Negotiating unidirectional media transfer is implemented by the “send-only” or
“recv-only” attributes of Session Description Protocol (SDP) [9]. The signaling messages of NCB go through SIP
Express Router, an open source SIP server (http://www.iptel.org/ser/). For real-time multimedia transmission over IP
networks, RTP is used as the transport protocol. We developed our prototype based on the JMF [20], which uses RTP. In
our prototype, files are transferred via TCP connections and instant messages are delivered via SIP Messages. The
prototype follows the extensible framework discussed in section 3, so that it can easily incorporate new media.

Figure 6 gives a high-level message sequence chart of user-level session management, which maps the NCB
architecture shown in Figure 3 into the real implementation. It demonstrates the layer interaction on both sides: the caller
(Peer A) and the callee (Peer B). The sequence chart covers the session establishment/teardown use-case as well as the
network failure use-case. Each activity (e.g. sending a message, or notifying the applications) of user-level session
management is triggered by an event (e.g. receiving a protocol message from the remote peer, or an invocation from
upper-layer collaborative applications). It enables user-lever sessions by allowing adding/removing of media/participants
any time during the life cycle of a user session. As discussed at the beginning of section 3, the Session Manager relies on
Signaling Manager to manage the control-plane and the Media Manager to manage the data plane.

NCB Manager Session Manager Signalling Manager Media Processing

createSesssion

AddParty

AddParty

NCB ManagerSession ManagerSignalling ManagerMedia Processing

AddParty
AddParty

AddParty

AddMedium

AddMedium

AddMedium
AddMedium

AddMedium

networkfailure
networkfailure

networkfailure

networkfailure

destroySession

destroySession

destroySession

destroySession

destroySession

Media processing

createConnection createConnection

Connection destroyed

destroyConnection destroyConnection

Peer A Peer B

Figure 6. Message Sequence Chart of User-Level Session Management

To justify the NCB concept, we developed two types of applications based on NCB: person-to-person voice call, and
person-to-person video communication (including both video and audio). We compare these against two equivalent open
source applications developed upon JAIN-SIP/JMF that we downloaded off the Internet: the JAIN-SIP-Applet-Phone
(https://jain-sip-applet-phone.dev.java.net/) for person–to-person voice call and the SIP-Communicator (https://sip-
communicator.dev.java.net/) for person to person video communication, shown in Table 5. The encoding schemes used
are G.711 and Motion JPEG, for audio and video, respectively. For each type of application, we did comparative
experiments to evaluate the NCB.

Application Based on
JAIN_SIP/JMF

Based on NCB

Person-to-Person

Voice Call

JAIN-SIP-Applet-
Phone

NCB-based Voice
Call

Person-to-Person

Video
Communication

SIP-
Communicator

NCB-based Video
Communication

 Table 5: Applications and Development.

The experiments were conducted on high-end desktop computers as well as laptops. The high-end desktop
computers were equipped with dual Xeon processor, 2GB memory, Gigabit Ethernet adaptors, and PCI-X bus. The
Windows XP operating system was installed. The computers were connected to a campus network with high-speed
routers / switches. The laptops are connected to 802.11 wireless LANs. Experiments were connected on both wired /
wireless networks. To examine the self-management feature, we also tested the application behaviors with a changing
available-bandwidth. For these experiments, since it’s hard to control the background traffic, we conducted these
experiments in dedicated VLANs and use software to limit the available bandwidth (see section 4.3 for details).

4.1 Value of High-level NCB Abstraction

We used the lines of code (LOC) metric to compare the above applications, with and without the NCB abstraction.
The results are shown in Table 6. The development time for Person to Person Voice Call application based on NCB is
about 5 hours (one developer). The development time for Person to Person Video Communication based on NCB is about
6 hours (one developer). We did not get the development time for the open source applications. However, based on the
lines of code comparison with and without NCB, it is reasonable for us to conclude that the development time for
communication applications without NCB would be significantly longer, probably requiring several days. The
experiments show that in terms of the lines of code (LOC) metric and the development cycle, the NCB interface makes it
significantly easier to develop multimedia communication applications.

Application JAINSIP/J
MF

 (LOC)

NCB

(LOC)

Person to Person Voice call 9478 435

Person to Person Video
Communication

16784 440

Table 6: Lines of Code comparison for developing applications with/without the NCB abstraction.

4.2 Performance Evaluation

While providing a higher-level abstraction to collaborative applications, NCB could potentially introduce
performance overhead. Although NCB does not touch the network protocols and infrastructure, it changes the paradigm of
application development on end hosts. Therefore, it is very important to evaluate the NCB performance on end-hosts. We
compare the CPU utilization as well as the network utilization of the applications developed with and without NCB. We
conducted the experiments with both high-end desktops connected to high-speed networks, as well as laptops connected to
wireless LANs with relatively low bandwidth. Both results demonstrate that NCB can provide the higher-level abstraction
without compromising the performance.

For person to person voice call, the average CPU utilization is around 0.237% with the JAIN_SIP-Applet-Phone
application, and 0.284% with the NCB-based equivalent application. Figure 7 shows the CPU utilization over time
collected with Windows Performance (the vertical red line is just an artifact of the software). For person to person video
communication, the average CPU utilization is 35.417% with SIP-Communicator, and 34.912% with the NCB-based
equivalent application. The CPU utilizations are almost the same.

In terms of network utilization, for person to person voice call, the average throughput is 73.8 kbps with the JAIN-
SIP-Applet-Phone, and 73.2 kbps with the NCB-based equivalent application. For person to person video communication,
the average network bandwidth of SIP-Communicator is 830 kbps, and 670 kbps for the NCB-based application, due to an
optimized image compression rate of NCB discussed in section 4.3.

4.3 Self-Management Experiments

Next, we demonstrate how NCB supports self-optimization as one aspect of self-management. The high-level policy
from the upper-layer application reflects the user preferences: if the network bandwidth changes, then adapt the video
compression rate and hence the image resolution. This policy implies that the frame rate should be stable (in this case 13
fps). This high-level policy is expressed using the XML policy string as shown in Figure 2. The throughput of video
traffic, limited by the available bandwidth, is the product of the frame-rate and the frame-size (which affects the image
resolution). The latter is further determined by the image compression rate. Without the self-managing policy at the sender,
a decreased bandwidth will cause packet losses, and significantly reduce the frame-rate at the receiver side. With the
above policy, the user can expresses his/her preference to maintain the stable frame-rate at the expense of the frame-size
and the image resolution: if the available bandwidth decreases, increase the image compression rate to reduce the frame-
size; if the available bandwidth increases, decrease the compression rate to increase the image resolution. The
compression rate is controlled by setting quantization parameters during the encoding process.

Figure 8: The network bandwidth (deep blue line) and video stream (light blue line) over time.

To simulate the change of bandwidth, we use NetPeeker (http://www.net-peeker.com/), a network speed limiter, to
control the traffic. With NetPeeker, we simulate three network capacities: 1100KB/s, 500KB/s, and 100KB/s. The results

120 100 0 60 20 40

0

20

40

60

CPU Utilization

Time(s)

80 140

80

100

120 100 0 60 20 40

0

20

40

60

CPU Utilization

Time(s)

80 140

80

100

 (a) SIP-Communicator (b) NCB-based software.

Figure 7. CPU Utilization with Person-to-Person Video Communication

of this experiment are illustrated in Figure 8. The deep blue line shows the network bandwidth and the light blue line
represents the sending rates of video stream. As Figure 8 shows, NCB dynamically adjusts its video sending rates based
on the change of available bandwidth.

Finally, we performed the same experiment with the SIP-Communicator and compared its receiver-side frame-rate
with an equivalent NCB-based application, shown in Figure 9. The red O symbols represent the frame rates for the SIP-
Communicator at different network bandwidths while the blue X symbols represent the frame rates of NCB-based
implementation. With the configured policy, the frame rate of NCB is stable when the network bandwidth decreases, due
to the increased compression rate. With a fixed compression rate, the receiving frame rate of SIP- Communicator
decreases and sometimes the video freezes, due to packet losses. Without the policy, the behavior of NCB is the same as
SIP-Communicator.

Note that it’s not that self-management cannot be built into the non-NCB applications developed with a stovepipe
approach. Rather, based on NCB, no-matter the application logic, developers can simply pass the policy shown in Figure 2
to achieve the self-management without changing the underlying code. That is, NCB makes the feature of self-
management more reusable.

4.4 NCB as a Layer in CVM

As mentioned in the introduction, NCB realizes the lowest layer of abstraction inside the CVM layered architecture [6].
To evaluate the effectiveness of NCB, we have incorporated a Java-based implementation of NCB (NCB/J) in the CVM
prototype.

Figure 10 shows two screenshots of CVM prototype that illustrate how easily a Telemedicine application can be made
readily available through the CVM generic Web-based GUI and model-driven schema. This figure captures a scenario
within which Mary loads the Telemedicine communication schema (which contains the application-dependent
collaborative logic) from the schema repository, and selects the two participants (Eric and John) from her Address Book
(Figure 10 (a)). The media used in the connection are selected from the Media Library (represented by icons on the top
right of Figure 10 (b)), and the two JPG files (“Heart_Scan.jpg” and “X_Ray1.jpg”), are dragged into the Connection Box
by Eric during the conversation (Figure 10 (b)). The actual communication delivery is performed by the underlying
application-independent NCB/J.

The file sharing service of this Telemedicine application uses the SCP protocol, while the Web GUI uses the HTTP
protocol (see Figure 3), in contrast to the SIP/RTP protocol used in voice communication. The extensible media
processing framework discussed in Figure 4 internally translates different medium requests into different pre-/post-

Figure 9: Frame rate changes with network
bandwidth change.

X

1.5fps

6.5fps

13fps X o

Frame rate

Network
bandwidth

100kB/s 500kB/s 1500kB/s

o

o

NCB with self-management (x)

Sip-Communicator (o)

X

processing and transmission operations, based on the underlying protocols. Hence, NCB can integrate both real-time
communication and best-effort delivery under the unified abstraction of user-level session presented in section 2.

(a) Overview of active communications.

(b) Details of a particular active connection.

Figure 10. Screenshots of CVM prototype.

5. Related Work

Prior work related to NCB can be categorized into three major groups. In the rest of this section, we briefly introduce
projects in each category and discuss how they are related to NCB.

Multimedia Communication Applications. MSN Messenger, Jabber [23], Google Talk [24] and Skype [25] are among
the numerous multimedia communication applications that are being widely used. These applications provide a one-size-
fits-all solution to multimedia communication and fail when there is a need for more specialized communication. Such
generic multimedia applications can be developed rapidly using NCB without worrying about the complexity of network-
level programming, as shown in section 4.4.

There are other projects including Polycom [26], RADVision [27], and Access Grid [28] that propose various IP-
based conferencing services. We consider these approaches as complementary to NCB and we plan to benefit from some
of their services. For example, we plan to use the VRVS reflectors to provide scalability to NCB.

In addition, most of these applications are non-open applications with license requests. We envision that the open
architecture NCB can promote the development of an open-source and portable middleware. Therefore new
communication features can be added into this customizable middleware without knowing the future application logic.

Protocols, APIs, and Software Frameworks. TCP/UDP socket is a low-level abstraction that we have already compared
in subsections 2.1 and 3.1. SIP [9] and H.323 [7] are among the signaling protocols for Internet telephony, while RTP [15]
provides transport functions for transmitting real-time audio and video. Java Media Framework (JMF) [20] is a library for
audio and video delivery. JAIN SIP [21] is a standardized Java interface to SIP. The low-level APIs of these
communication libraries are still significantly complex to use, and do not encapsulate the concept of user-level sessions
(discussed in section 2.1) for multimedia multi-party communication. In fact, NCB internally uses these protocols and
frameworks to implement its high-level abstractions. Furthermore, these low-level APIs do not hide the complexity and
the heterogeneity of underlying networks.

The Java Telephony API [29] is a high-level API for traditional telephony applications, and does not support
multimedia communication applications with sophisticated communication needs. [2] discusses open software
architectures for IP-based voice communication. Parlay [22] is an interface that enables the rapid creation of
telecommunication services. These frameworks ([2, 22]) mostly address server-side architectures. The server-side
architecture has different concerns than the client-side middleware, which is the focus of NCB. Furthermore, in contrast to
traditional telephone networks, where end devices are “dumb”, in IP networks, end-hosts are capable of sophisticated
collaborative logic. Therefore, client-side middle development is as important and complicated.

There are a number of other communication middleware proposed recently [30, 31, 32, 33]. [30] focuses on the
object-oriented design of middleware purely from the perspective of software engineering, without considering issues in
multimedia multi-party communication. While [31]’s scope is disaster management in mobile networks, [32]’s scope is
on pipelined communication in cluster computing. [33] improves the efficiency of group communication. None of theses
works have a general scope on the middleware development for the next-generation multimedia telecommunication in
collaborative applications.

Reflective and adaptive middleware and toolkits. In order to provide self-management in software, two general
approaches have been used: parameter and compositional adaptation [13]. Parameter adaptation involves the
modification of variables that determine program behavior [5, 8, 11, 17]. A weakness of parameter adaptation is that it
cannot adopt algorithms or components left unimplemented during the original design and construction of an application.
That is, parameters can be tuned or an application can be directed to use a different existing strategy, but strategies
implemented after the construction of the application cannot be adopted. In contrast, compositional adaptation results in
the exchange of algorithmic or structural parts of the system with ones that improve a program’s fit to its current
environment [1, 4, 12, 14].

In its internal design, NCB employs both parameterized and compositional adaptation. Instead of reinventing the
wheel, NCB incorporates existing adaptive and reflective middleware toolkits to provide self-management using only
high-level policies reflecting user or application preferences. ACE, Ensemble, and Open ORB are among the projects that
we closely follow to incorporate some of their services inside NCB. ACE [16] is a real-time object-oriented framework
written in C++ that wraps many OS services and provides a variety of communication-related patterns that can be
employed by NCB. Ensemble [14] is a groupware communication toolkit that supports protocol stacks constructed from
fine-grained components, called micro-protocols. We plan to leverage these micro-protocols to provide the desired
behavior, with respect to the high-level policies, for NCB at runtime. OpenORB [3] focuses on the role of computational
reflection in middleware for mobile multimedia applications that can be dynamically adapted in response to the
environmental changes. NCB is also a reflective middleware, but does not focus only on mobile computing.

6. Conclusion and Future work

We have proposed NCB, a unified high-level abstraction that separates the complexities of network-level
communication control and media delivery from the application-dependent collaborative logic. NCB facilitates rapid
creation of portable collaborative multimedia applications. We have identified the requirements of the NCB abstraction

required for the class of multi-party and multimedia communication applications. The design of NCB is based on an
extensible and self-managing software framework. In the future, we plan to enhance the extensibility, reusability, and self-
management of NCB.

References

1. M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable systems overview and prospective vision,” in
Proceedings of the 23rd International Conference on Distributed Computing SystemsWorkshops (ICDCSW’03), May
2003.

2. G. W. Bond, E. Cheung, K. Hal Purdy, P. Zave, and J. C. Ramming, “An open architecture for next-generation
telecommunication services”, ACM Transactions on Internet Technology IV(1):83-123, February 2004.

3. G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An architecture for next generation middleware”,
Middleware’98, September 1998.

4. W. K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing adaptive software in distributed systems,” in
Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21), pp. 635–643, April
2001.

5. A. K. Dey and G. D. Abowd, “The context toolkit: Aiding the development of context-aware applications,” the 22nd
International Conference on Software Engineering (ICSE), June 2000.

6. Y. Deng, S. M. Sadjadi, P. Clarke, C. Zhang, V. Hristidis, R. Rangaswami, and N. Prabakar. A communication virtual
machine. the 30th Annual International Computer Software and Applications Conference (IEEE COMPSAC),
September 2006.

7. ITU-T Recommendation H.323v.4 "Packet-based multimedia communications systems", November 2000.

8. M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-tolerant systems,” International Journal of
Computer Systems Science and Engineering, vol. 11, pp. 125–133, September 1996.

9. M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, “SIP: Session Initiation Protocol”, RFC 2543, March
1999.

10. J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE Computer, vol. 36, pp. 41–50, January
2003.

11. G. Kortuem et. al, “When peer-to-peer comes face-to-face: Collaborative peer-to-peer computing in mobile ad-hoc
networks,” in Proceedings of the 2001 International Conference on Peer-to-Peer Computing (P2P2001), August 2001.

12. P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi, “Composable proxy services to support
collaboration on the mobile internet,” IEEE Transactions on Computers, pp. 713–726, June 2003.

13. P. K. McKinley, M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing adaptive software”, IEEE Computer,
pages 56-64, July 2004.

14. R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr, “Building adaptive systems using Ensemble,”
Software Practice and Experience, vol. 28, August 1998.

15. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications”,
RFC 3550, July 2003.

16. D. C. Schmidt, “The ADAPTIVE Communication Environment: An object-oriented network programming toolkit for
developing communication software,” Concurrency: Practice and Experience, vol. 5, no. 4, pp. 269–286, 1993.

17. J. P. Sousa and D. Garlan, “Aura: an architectural framework for user mobility in ubiquitous computing
environments,” in Proceedings of the third Working IEEE/IFIP Conference on Software Architecture, pp. 29–43,
2002.

18. J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs)”, RFC 3489, March 2003.

19. Jonathan Lennox and Henning Schulzrinne, “A Protocol for Reliable Decentralized Conferencing”, ACM NOSSDAV
2003.

20. Java Media Framework (JMF). http://java.sun.com/javase/technologies/desktop/media/jmf/

21. JAIN-SIP. https://jain-sip.dev.java.net/

22. The Parlay Group, Parlay/osa specifications, http://www.parlay.org/en/specifications/.

23. Jabber, http://www.jabber.org/.

24. Google, Google Talk. http://www.google.com/talk/.

25. Skype Limited, Skype developer zone. https://developer.skype.com/.

26. Polycom, http://www.polycom.com/

27. Radvision, http://www.radvision.com/

28. Access Grid, http://www.accessgrid.org/

29. SUN, Java Telephony API, http://java.sun.com/products/jtapi/

30. F. M. Q. Pereira1, M. T. O. Valente, R. S. Bigonha1 and M. A. S. Bigonha1, “Arcademis: a Framework for Object
Oriented Communication Middleware Development”, Software: Practice and Experience. Volume 36. Issue 5. pp.
495-512. 2006.

31. L. Juszczyk, S. Dustdar, “A Middleware for Service-oriented Communication in Mobile Disaster Response
Environments”, 6th International Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC). 9th
ACM/IFIP/USENIX Middleware Conference 2008. December 2008.

32. S. Fide and S. F. Jenks, “A middleware approach for pipelining communications in clusters,” Cluster Computing, vol.
10, pp. 409–424, December 2007.

33. Jianjun Zhang, Ling Liu, Lakshmish Ramaswamy, Gong Zhang and Calton Pu, “A Utility-Aware Middleware
Architecture for Decentralized Group Communication Applications”, ACM/IFIP/USENIX 8th International
Middleware Conference (MIDDLEWARE-2007), November 2007

34. C. Zhang, M. Sadjadi, W. Sun, R. Rangaswami and Y. Deng, "A User-Centric Network Communication Broker for
Multimedia Collaborative Computing", Proceedings of the 2nd International Conference on Collaborative Computing,
Atlanta, November 2006.

