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ABSTRACT 
 

We present a TCP-compatible and -friendly protocol which 
abolishes three major shortfalls of TCP for reliable multimedia 
applications over heterogeneous networks: (i) ineffective 
bandwidth utilization, (ii) unnecessary congestion-oriented 
responses to wireless link errors (e.g., fading channels) and 
operations (e.g. handoffs), and (iii) wasteful window adjustments 
over asymmetric, low-bandwidth reverse paths. We propose TCP-
Real, a high-throughput transport protocol that minimizes 
transmission-rate gaps, thereby enabling better performance and 
reasonable playback timers. In TCP-Real, the receiver decides 
with better accuracy about the appropriate size of the congestion 
window. Slow Start and timeout adjustments are used whenever 
congestion avoidance fails; however, rate and timeout adjustments 
are cancelled whenever the receiving rate indicates sufficient 
availability of bandwidth. We detail the protocol design and we 
report significant improvement on the performance of the protocol 
with time-constrained traffic, wireless link errors and asymmetric 
paths.  

 

1. INTRODUCTION 
 

The standard Transmission Control Protocol (TCP) has some 
expedient properties that match the requirements of reliable best 
effort service over wired networks. However, these properties 
cannot render TCP the protocol of choice for real-time 
communications over  heterogeneous networks. Congestion 
control dominates the behavior of the protocol, even when errors 
are caused by transmission deficiencies. In the presence of non-
congestive conditions, TCP might under-utilize the available 
bandwidth. False congestion-oriented responses due to 
transmission errors or asymmetric paths [6], with rapid downward 
window adjustments, undermine the protocol’s eligibility for 
time-constrained applications that rely on smooth playback timers.  
 

The most well-known and widely-used versions of TCP are Tahoe 
and Reno[1]. The congestion-control algorithm introduced by 
Tahoe includes Slow Start, Congestion Avoidance, and Fast 
Retransmit. The congestion window effectively grows 
exponentially (slow start) until a threshold is reached. Beyond that 
point additive increase (congestion avoidance) takes over. When 
retransmission timeout event occurs, the congestion window is set 
to double the maximum segment size. In Fast Retransmit, a 
number of successive duplicate acknowledgements (dacks) trigger 
off a retransmission without waiting for the associated timeout 
event to occur. Then the slow start is applied. TCP Reno 
introduces Fast Recovery in conjunction with Fast Retransmit. 
Fast Recovery effectively set the congestion window to half its 
previous value, rather than performing Slow Start, after the 
retransmitted segment gets acknowledged. TCP NewReno[9] 
introduces the concept of Partial Acknowledgement, which is an 
indication of multiple segment drops in presence of dacks. In such 
case, Fast Recovery procedure goes on re-transmitting multiple 
dropped segments until the absence of Partial Acknowledgements. 
 
Since TCP’s approach to error detection is based on mechanisms 
that only confirm that a segment is missing (i.e., 3-DACKs, 
timeouts), the nature of the error is not detected and does not 
determine alternative recovery strategies. The protocol’s behavior 
is dominated by congestion control, even when errors are caused 
by transient random errors, transmission burst errors, and 
handoffs. However, recovery from non-congestion errors using 
the standard congestion control mechanism results in unnecessary 
degraded performance. The congestion control mechanisms 
rapidly reduce the window and re-adapt slowly after the error 
conditions are over. Communication time is extended and 
transmission rate fluctuation cannot conform to some 
applications’ time-constrained patterns of data processing. Similar 
anomalies have been observed not only in the context of wireless 
networks but also in wired. For example, congested or asymmetric 
reverse paths that might carry the receiver-generated 
acknowledgments downgrade the transmission rates and the 
bandwidth utilization of the forward path. The reason is that in 
standard TCP the recovery strategy is dominated by the Round-
Trip-Time (RTT) measurements. Hence, the applicability of TCP 
for multimedia applications over heterogeneous networks is 
limited for two reasons: (i) throughput is degraded, and (ii) data 
transmission cannot always conform to the time constraints of 
some applications.  
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The above limitations can be outlined precisely by the protocol’s 
behavior in conjunction with the token bucket algorithm. The 
algorithm can determine an upper bound for TCP’s throughput, 
hence alleviating the concerns of fairness. It also presents a 
challenge for TCP to demonstrate its capability to exploit the 
available bandwidth. Given a token rate r and a depth B, TCP is 
faced with the opportunity to consume r tokens per time interval. 
The window backward adjustments circumscribe further the 
throughput; tokens might not be consumed within the time 
interval and new tokens will be wasted due to the limitation of the 
token depth. Clearly, the number of tokens consumed per RTT 
constitutes an appropriate metric for the evaluation of the 
protocol’s performance. We present results using this metric in 
section 4. 

 
A well-designed version of TCP, which is however focused on 
sender-based congestion avoidance, is TCP Vegas [3]. Vegas 
defines a BaseRTT to be the minimum of all measured RTTs, and 
ExpectedRate to be the ratio of congestion window and BaseRTT. 
The sender measures the ActualRate based on the sample RTTs. If 
the difference between the ExpectedRate and ActualRate is below 
a threshold α, the congestion window increases linearly during the 
next RTT; if the difference exceeds another threshold β, TCP 
Vegas decreases the congestion window linearly during the next 
RTT. According to [3], Vegas achieves better transmission rates 
than Reno and Tahoe. Currently, it does not contribute to error 
detection and recovery in wired/wireless networks. Its RTT-based 
window adjustments do not allow for improving the protocol’s 
behavior over asymmetric paths. 

 
The authors in [2] studied TCP interaction with IETF control-load 
services for reservation-based applications. Compliant packets are 
sent marked while non-compliant and best-effort packets are sent 
unmarked.  Their proposal extends RED by setting for marked 
packets a much lower dropping probability than for unmarked. 
For reservation-based connections, the congestion window 
consists of two parts: a reserved part equal to the product of 
reserved rate and the estimated RTT, and a variable part that tries 
to estimate the residual capacity and share it with other active 
connections. 

 
The Wave-and-Wait Protocol (WWP) [4, 5] is a TCP-
incompatible lightweight transport protocol running on top of IP. 
WWP introduces the concept of “wave”. A wave consists of a 
predetermined number of fixed-sized data segments sent side by 
side, where the number of segments comprising a wave is set 
according to a “wave level”. The less the perceived congestion 
risk, the higher the wave level and hence, the more segments a 
wave contains. A wave is effectively the congestion window with 
two additional attributes: (i) its size is fixed during each RTT and 
corresponds to the data receiving rate (i.e., it is not based on the 
acknowledgements received by the sender), and (ii) its size is 
published to both peers. The receiver decides about the next wave 
level according to the current wave level and the actual 
transmission time of the wave. It notifies the sender about the next 
wave level expected by using negative-SACK. WWP is a high-
throughput energy-saving transport protocol and owns a number 
of advantages over standard TCP on heterogeneous networks.  

 
A major component of TCP-Real is the wave-based 
communication pattern. Unlike the sender-based indistinct 
window manipulation, the wave-based communication enables 

both the sender and the receiver to use a limpid communication 
pattern. We show that, in the context of wired/wireless 
heterogeneous computing, a wave-based communication in 
conjunction with appropriate modifications to the error control 
mechanism could cancel TCP's inflexible behavior. TCP-Real 
enables accurate rate adjustments initiated by the receiver, 
possibility to distinguish the nature of the error, and appropriate 
recovery strategies within the frame of fair behavior and friendly 
rates. We show that transmission gaps can be reduced and 
throughput can be increased, thereby enabling better performance 
and feasible playback timers. Furthermore, asymmetric-link-
caused behavior can be avoided. Our modification requires no 
infrastructure changes and is designed to work with standard TCP 
and to collaborate well with reservation mechanisms.  

2. TCP-Real 
 

2.1 Protocol Strategy and Justification 
 

The basic idea of TCP-Real is to incorporate into TCP the concept 
of “wave” from WWP without changing the semantics of TCP 
and without violating the established standards of Additive-
Increase/Multiplicative-Decrease-based congestion control1 

during congestion. The reason to introduce the concept of wave is 
that in order for the receiver to effectively estimate network 
congestion based on the successive segments reaching it, it needs 
some knowledge of the sender’s pattern of transmission of these 
segments. Since TCP sender sends packets side by side within the 
congestion window every RTT, from receiver’s point of view, the 
sender sends packets in waves. In TCP-Real, the sender’s 
congestion window size is controlled by the receiver, rather than 
the sender itself. The receiver measures the data-receiving rate 
and adjusts the wave level according to the change of data 
receiving rate, which reflects network conditions. The lower the 
perceived rate, the higher the wave level suggested by the 
receiver, and vice versa. The receiver notifies the sender about the 
new wave level, using an option attached to the corresponding 
ACK. When the sender receives the ACK, it extracts the option 
field and changes its congestion window accordingly. 
 
TCP-Real is a transport level solution that requires no 
modification at the routers. The contribution of TCP-Real is based 
on the accuracy of congestion level estimation and the subsequent 
appropriate recovery. Since the up-to-date congestion condition is 
monitored by measuring the data-receiving rate, TCP-Real 
receiver can not only know whether there is congestion, but also 
estimate more precisely the level of congestion. Taking 
advantages of this property, TCP-Real is designed to avoid 
congestion2. With Slow Start and Congestion Avoidance 
mechanisms used by TCP Reno/Tahoe, the sender continuously 
increases the sending window until the packet loss caused by 
congestion occurs, where it rapidly reduce the sending window. 
With TCP-Real, the sender can adjust the sending window before 
the packet loss occurs, thereby the fluctuation of the transmission 
rate is smaller. 
 

                                                 
1 A recent paper [7] discusses the inefficiencies of AIMD, 
although the issue is still a subject of discussion. 
2 Source-based congestion avoidance was first introduced in TCP-
Vegas.  



The above modifications also constitute the foundation for an 
efficient recovery strategy over heterogeneous networks, which 
increases the throughput and reduce the transmission gap of real 
time applications. When transient random errors occur on wireless 
links, the data-receiving rate is unaffected. That is, an error might 
occur while the congestion level could not justify a detected 
packet drop. The sender then could avoid window adjustments 
backwards and transmit conservatively or aggressively, depending 
on the level of congestion and the density of the error detected. 
Our design currently is relatively more conservative: upon a 
timeout TCP-Real always backs off as Tahoe and Reno, but 
adjusts rapidly upwards to the appropriate wave level when the 
timeout was caused by transient random errors. 
 
TCP-Real’s receiver-based rate control renders the sender capable 
of recovering quickly after an error condition is over. This is a 
nice mechanism against burst errors and handoffs of wireless 
links. After the burst error is over, the receiver can estimate the 
congestion level faster and the sender’s congestion window will 
be set accordingly by the receiver. With Slow Start and 
Congestion Avoidance mechanism and in presence of relatively 
large delay-bandwidth product, it takes more round trips to reach 
the appropriate size of the sending window. 
 
In order to avoid the wasteful window adjustments downward 
over asymmetric links, the sender needs additional equipment: to 
decouple the timeout mechanism and the RTT from the window 
size. That is, in standard TCP, when there is an acknowledgement 
loss, timeout is extended and congestion window is reduced. In 
TCP-Real, the timeout can be extended, but the window size 
could remain the same or even increase. The reasoning behind this 
strategic modification is that the sender needs to extend the 
timeout based on the RTT measurements, in order to 
accommodate the potential delays of the reverse path and avoid an 
early timeout. However, only the perceived congestion level of 
the forward path will determine the sender’s congestion window 
size. 
 
In practice, the wave-based communication of TCP introduces a 
novelty: both the sender and the receiver are aware of the current 

window size (wave level), since the congestion window is now 
included in the header. As it is exemplified by flow control that 
requires the Advertised Window to be included in the header, the 
receiver now communicates with the sender including also the 
Congestion Window in the header, by means of the wave level. 
However, although the Advertised Window indicates the number 
of bytes permitted for transmission, the Congestion Window 
indicates the number of segments. Note that both flow and 
congestion measurements are taken at the receiver; the sender 
uses a Sending Window, which is the minimum of the two distinct 
windows, minus the data that is already in transit. Hadn’t we been 
worried about TCP’s semantics, we could have combined the two 
windows into a single Sending Window manipulated at the 
receiver and replacing the Advertised Window. 
 

2.2 Protocol Implementation 
 

TCP-Real extends TCP-Reno. In TCP-Real, the receiver 
computes the data transmission rate by collecting the current 
wave-length of data. The receiver also records tf and tl, the 
arriving time of the first and last segment in the wave, 
respectively. The data-receiving rate can therefore be computed as 
the ratio of the wave size to wave receiving time. The wave 
receiving time is the difference between tf and tl, and could be 
much smaller than the RTT. The wave size used in calculations is 
actually the “expected” wave size, not the “received” wave size, 
since loss of corrupted segments in a wave needs to be counted. 
Packet loss due to random transient errors should not affect the 
computed rate, which is used to measure the congestion level; 
packet loss due to congestion could be detected by the change in 
the receiving rate anyway. 

 
The receiver determines the next wave level according to the 
change of the data-receiving rate over time. Whenever a new 
receiving rate is computed, it is compared against the previous 
one. If the rate increases (decreases), which means the network 
gets less (more) congested, the next wave level should be adjusted 
to higher (lower) levels. The two weights, preserve_weight and 
adjust_weight indicate the inclination to adjust conservatively or 
aggressively, respectively.  

if ( previous_rate > current_rate){ 
 if (current_wave_level > wave_level_threshold)  

next_wave_level = (0.618 + 0.382*(current_rate /     
                                previous_rate)) * current_wave_level ; 

else 
next_wave_level = (0.382 + 0.618*(current_rate /        
                                previous_rate)) * current_wave_level ; 

} 
else{ 
 if (current_wave_level > wave_level_threshold)  

next_wave_level = (0.382 + 0.618*( current_rate /     
                                previous_rate)) * current_wave_level ; 

else 
next_wave_level = (0.5 + 0.5*(current_rate /        
                                previous_rate)) * current_wave_level ; 

} 
if (next_wave_level>max_wave_level)  
 next_wave_level>max_wave_level; 
 

Figure 1. Wave level adjustment algorithm 



 
rate_ratio=current_rate/previous_rate; 
next_wave_level = current_wave_level*  
 (preserve_weight+adjust_weight*rate_ratio);   
where  preserve_weight + adjust_rate = 1. 
 
According to the paradigm of Slow Start and Congestion 
Avoidance, the sender’s congestion window should expand 
aggressively (conservatively) when the window size is relatively 
small (large).  We further propose in TCP-Real that the 
congestion window decreases aggressively (conservatively) when 
the window size is large (small). Notice that here the congestion 
window decreases before a packet loss occurs. Hence, the weights 
in the above formula need to be set dynamically depending on the 
relative size of current wave level, with a wave level threshold 
serving as judging reference. Whenever a receiver wave-decision-
timeout event occurs (see below), the threshold is set to half the 
wave level prior to the timeout. Figure 1 shows the wave level 
adjustment algorithm, with weights set dynamically in different 
cases. 
 
The receiver inserts the TCP-REAL option in the header every 
time a segment is acknowledged, to notify the sender about the 
next wave level. The TCP_REAL option is four bytes long. The 
second two-byte content of the option contains the next wave 
level suggested by the receiver. The sender extracts the 
TCP_REAL option from the ACK’s header and sets its congestion 
window accordingly.   Since the identical TCP_REAL option is 
repeated in every ACK before the wave level changes, the 
probability not to deliver the wave-level information to the sender 
is pretty low. However, the sender should have some kind of a 
self-adjusting mechanism activated upon the lack of all wave-
level signals sent by the receiver. A bit is associated with the 
sender’s retransmission timer. Before the timer expires, if any 
DACK is received, the bit is set. Upon a timeout, the sender 
retransmits the packet but reduces the congestion window to two 
segments, like Slow Start, only if the bit is not set. This is taken as 
an indication that the sender did not receive any wave information 
during that time. Thus, reliable transmission and congestion 
control are effectively decoupled.  

 
If the last segment in the wave is lost, the receiver will not be able 
to compute the receiving rate (tl unavailable) and update the next 
wave level until the sender timeouts and retransmits. Note that the 
sender needs the information most when congestion develops. In 
such case, the receiver needs to update the wave level information 
before it completes collecting the current wave of data. Therefore, 
a wave-level-decision timer needs to be set at the time the receiver 
first receives any segment within a wave. The length of the timer 
is set to two times the expected wave receiving time (size of the 
current wave divided by the previous data-receiving rate). After 
the timer expires, the receiver computes the receiving rate when 
the next segment arrives, and updates the wave level information 
immediately. Then the newly updated wave is sent back with the 
ACK triggered. 

3. TESTING 
 

The protocol is implemented using the x-kernel protocol 
framework [8]. In our experiments we used 24 wave levels, 
ranging from 1 to 24. For wave level i, the corresponding 
congestion window size is 2*i*max_segment_size. The 
minimum wave level corresponds to the size of 2 segments, while 

the maximum wave level corresponds to the maximum congestion 
window. The number is selected to be sufficient to fill in a 
relatively large Delay*Bandwidth product. The tests were carried 
out in a single session, with client and server running on two 
directly connected dedicated hosts. 5M bytes original data was 
sent from one end host to another in a single session. The data was 
selected to be sufficiently large to avoid significant deviations of 
measurements. We measured the protocol’s goodput performance 
as:  
Goodput = Original data / Connection time 

 
In order to simulate the error conditions, we developed a new x-
kernel “virtual protocol”, which was configured between TCP and 
IP. The protocol’s core mechanism consists of a two-state 
continuous Markov chain. Each state has a mean sojourn time mi, 
a drop rate ri (i = 1,2) whose values are set by user. Thus when it 
visits state i, the mechanism remains there for an exponentially-
distributed amount of time with mean mi, during which it 
randomly drops segments with probability ri. In our experiments, 
one states were always configured with a zero drop rate. Thus, 
simulated error conditions during a given experiment alternated 
between “On” and “Off” phase during which drop actions were in 
effect and were suspended, respectively. The two states have the 
same sojourn time, 1 second, which is sufficiently large to permit 
a full window recovery under “clear” network conditions. Note 
that our model uses packet error rate (PER). The error rate 
presented in the figures and tables in the next section denotes the 
PER during the “ON” phase and not the PER of the entire 
connection. 
 
We developed another x-kernel protocol VREAL, configured on 
top of TCP, to simulate a playback-based application with data 
rate 1Mbps. We present here results with a playback time interval 
of 40ms. That is, our application attempts to read and consume 
5KB each time, 25 times a second. Because of the sending 
window fluctuation and transmission gaps of TCP, there are 
playback instances when the data is unavailable to the application. 
The percentage of the application successful attempts to read 5KB 
from the playback buffer is used to measure the protocol’s real-
time performance. Playback time interval of  100ms was also 
tested. 
 
In order to reveal the dynamics of TCPs with real time traffic, we 
also simulate a token bucket at the sender side, with a depth of 
20KB and a rate of 20 tokens per 30ms. Each token corresponds 
to a packet of 1 KB. The token consumption rate every RTT is 
measured to see the source’s capability to fully utilize the 
transmission speed the token bucket allows. The token 
consumption rate per RTT was contrasted to the permitted rate in 
order to demonstrate the protocol’s capability to exploit the 
available bandwidth. 
 

4. RESULTS AND ANALYSIS 
 

4.1 Goodput Performances 
 

Our experiments first demonstrate that the Goodput is improved 
over heterogeneous networks with a short one-way propagation 
delay of 15 ms. With dropping rate of state ON varying from 0.0 
to 0.5, the goodput comparison of  TCP Real/Reno/Tahoe is 
shown in Table 1 and Figure 2. As we can see, TCP-Real 
outperforms both Tahoe and Reno. Even with random transient 
errors, Reno and Tahoe’s congestion control mechanism 



unnecessarily reduce the congestion window and adjust the 
timeout value. In TCP Real, in case the receiving rate does not 
justify a drop due to congestion, the congestion window is not 
adjusted3. This behavior of TCP-Real also results in improved 
goodput given the time constraints set for the experiment.  

It can be observed from Figure 3 and Table 2 that when the virtual 
protocol is only configured in the reverse direction in order to 
represent an asymmetric path, TCP-Real prevails again: It 
outperforms Tahoe and Reno, since the sender’s congestion 
window is now controlled by the congestion level of the forward 
path estimated by the receiver.  

 
Parameters were also set to reflect the impact of bursty or handoff 
conditions on protocol and application performance. The mean 
sojourn time was set to 5 seconds for state OFF and to 0.5 for 
state ON. The dropping rate for state ON was always 0.99, and 
50M bytes original data was sent during each session. Data size is 
now selected larger due to the significant standard deviation 
observed with the previous setting. The results in Table 3 show 

                                                 
3 In the event of a timeout the window is, in fact, adjusted as in 
Tahoe and readjusts appropriately when the conditions do not call 
for congestion control. 

that goodput for TCP Real, Reno and Tahoe is 594.67KBps, 
310.98KBps and 308.75KBps, respectively. This confirms the 
allegation that TCP-Real has enhanced re-adapting capability after 
a bursty error condition is over, compared to Tahoe and Reno. In 
TCP-Real, the receiver can estimate the congestion-
level/disconnection more precisely within one RTT. Tahoe and 
Reno require more RTTs for recovery even though the network 
conditions might not justify a conservative behavior.  
 

4.2 Application Success Percentage  
 

The application success percentage comparison under the 
different scenarios described above is shown in Table 4, Table 5, 
Table 6 and  Figures 4 and 5. The result for playback time interval 
of 100ms is about the same, as shown in Figure 11 and 12 in the 
appendix. As expected, not only the goodput of TCP is improved, 
but also the time-constrained application performs significantly 
better: TCP-Real reduces unnecessary transmission gaps that 
dominate the application’s performance. TCP-Real’s congestion 
avoidance mechanism enables the sender to adjust the sending 
window before a packet loss due to congestion occurs. Since the 
fluctuation of the transmission rate is smaller, the transmission 

Figure 5. Application Success Percentage over Asymmetric Links
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Figure 4. Application Success Percentage with Link Errors
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gaps are reduced and the real time application experiences better 
performance. 
 

4.3 Impact of Propagation Delay 
 

The above experiments are repeated with a longer one-way 
propagation delay of 50 ms to simulate WANs or wireless link 
with high propagation delay. Such conditions highlight further 
Reno’s and Tahoe’s inappropriate recovery  strategy.  With longer 
propagation delay, the relative performance gain of TCP-Real is 
amplified, as shown in Table 7-12 and Figure 6-9.  
 

4.4 Token Consumption 
 

We also present the token bucket test as described in section 3, 
with the 15ms delay and 20% packet dropping rate. Recall that 
this is the error rate during the “ON” phase. Traces of  token 
consumption every RTT are plotted in Figure 10. Whenever a link 
error occurs, Reno and Tahoe rapidly reduce the window size and 
hence the token consumption rates. Instead, with TCP-Real, the 
token consumption is relatively stable. Furthermore, the average 
of consumed tokens per RTT (11.12Kbytes) is significantly higher 
compared to Reno (5.82 Kbytes) and Tahoe (3.65 Kbytes). 
 

 
  
 
 

Figure 8. Application Success Percentage with Link Error and High 
Propagation Delay
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Figure 6. TCP Goodput with Link Error and High Propagation Delay
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5. CONCLUSIONS AND FUTURE WORK 
 
We have presented a receiver-oriented TCP that remedies major 
shortfalls of standard TCP for multimedia services over 
heterogeneous networks. The protocol attempts to avoid 
congestion and RTT-based window adjustments. It applies an 
efficient error recovery whenever packet drops are not due to 
congestion and decouples the RTT and the timeout from the size 
of congestion window. Under congestion, the protocol exhibits a 
conservative behavior respecting the established standards of 
fairness and stability. TCP-Real’s predetermined communication 
patterns are well suited to reservation mechanisms. Our future 
work will attempt to demonstrate this argument with RSVP. 
Furthermore, we plan to investigate the protocol’s behavior in 
collaboration with other network components or devices that 
attempt to avoid/control congestion. 
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F ig u re  1 1 .  A p p lic a t io n  S u c c e s s  P e rc e n ta g e  w ith  L in k  E rro r  (w ith  
p la y b a c k  in te rv a l  o f  1 0 0 m s )
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Figure 12. Application Success Percentage over Asymmetric Link (with playback interval 
100ms)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Error Rate

TCP-Wave

TCP-Reno

TCP-Tahoe



Test 
Settings

P rotocol
D ropping 

Rate
Transm iss ion 

Tim e (s)
G oodput 
(Kbps)

TC P-Real 22.06 237.65
TCP-Reno 23.06 227.36
TCP-Tahoe 24.46 214.35
TC P-Real 26.39 198.68
TCP-Reno 27.49 190.73
TCP-Tahoe 28.71 182.62
TC P-Real 31.68 165.51
TCP-Reno 33.80 155.11
TCP-Tahoe 38.69 135.51
TC P-Real 41.39 126.66
TCP-Reno 56.85 92.23
TCP-Tahoe 41.14 127.45
TC P-Real 51.42 101.96
TCP-Reno 73.49 71.34
TCP-Tahoe 84.73 61.88
TC P-Real 112.96 46.41
TCP-Reno 198.48 26.42
TCP-Tahoe 160.54 32.66
TC P-Real 204.45 25.64
TCP-Reno 312.58 16.77
TCP-Tahoe 328.35 15.97

Tabel 1 TC P G oodput w ith  L ink E rror
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Test 
Settings

Protocol
Reverse Path 
Dropping Rate

Transmission 
Time (s)

Goodput 
(KBps)

TCP-Real 22.42 233.87
TCP-Reno 22.41 233.91
TCP-Tahoe 23.19 226.08
TCP-Real 24.13 217.29
TCP-Reno 23.70 221.26
TCP-Tahoe 25.10 208.90
TCP-Real 28.02 187.09
TCP-Reno 28.19 186.00
TCP-Tahoe 30.37 172.62
TCP-Real 32.39 161.87
TCP-Reno 30.48 171.99
TCP-Tahoe 30.81 170.15
TCP-Real 45.87 114.30
TCP-Reno 46.20 113.49
TCP-Tahoe 52.63 99.62
TCP-Real 51.16 102.47
TCP-Reno 72.87 71.95
TCP-Tahoe 68.94 76.05
TCP-Real 75.30 69.62
TCP-Reno 213.42 24.57
TCP-Tahoe 120.53 43.50

Table 2.  TCP Goodput over Asymmetric Links
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Test Settings Protocol Dropping Rate Transmission Time (s) Goodput (KBps)
TCP-Real 95.38 549.67
TCP-Reno 168.59 310.98
TCP-Tahoe 169.81 308.75

1 0.99

Table 3. TCP Goodput with Handoff

 
 

Test Settings Protocol Dropping Rate
Application 

TCP-Real 100.0%
TCP-Reno 99.6%
TCP-Tahoe 99.7%
TCP-Real 91.9%
TCP-Reno 90.9%
TCP-Tahoe 93.4%
TCP-Real 79.0%
TCP-Reno 75.7%
TCP-Tahoe 80.6%
TCP-Real 76.7%
TCP-Reno 71.7%
TCP-Tahoe 71.9%
TCP-Real 51.0%
TCP-Reno 43.1%
TCP-Tahoe 43.6%
TCP-Real 36.3%
TCP-Reno 24.9%
TCP-Tahoe 25.6%
TCP-Real 23.4%
TCP-Reno 13.7%
TCP-Tahoe 13.9%

4
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0.10

Table 4. Application Success Percentage with Link Errors
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Test S ettings P rotocol
R everse 

P athD ropping R ate
Application 
Percentage

TC P-Real 99.4%
TCP-Reno 98.7%
TCP-Tahoe 99.0%
TC P-Real 97.6%
TCP-Reno 97.6%
TCP-Tahoe 97.7%
TC P-Real 88.6%
TCP-Reno 89.7%
TCP-Tahoe 89.7%
TC P-Real 78.6%
TCP-Reno 76.1%
TCP-Tahoe 79.9%
TC P-Real 64.9%
TCP-Reno 65.1%
TCP-Tahoe 56.7%
TC P-Real 51.3%
TCP-Reno 34.3%
TCP-Tahoe 34.9%
TC P-Real 36.3%
TCP-Reno 27.3%
TCP-Tahoe 22.6%

4

0.000
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Table 5. Application  S uccess P ercentage over Assym m etric 
L inks
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Test Settings Protocol Dropping Rate Application Percentage
Real 72.57%

TCP-Reno 57.29%
TCP-Tahoe 62.57%

1 0.99

Table 6. Application Success Percentage with Handoff

 
 



Test 
Settings

Protocol
Dropping 

Rate
Transmission 

Time (s)
Goodput 
(KBps)

TCP-Real 16.61 315.61
TCP-Reno 11.59 452.44
TCP-Tahoe 10.36 506.26
TCP-Real 15.61 335.91
TCP-Reno 14.50 361.68
TCP-Tahoe 16.50 317.67
TCP-Real 20.21 259.42
TCP-Reno 40.76 128.63
TCP-Tahoe 41.19 127.30
TCP-Real 23.21 225.87
TCP-Reno 69.30 75.66
TCP-Tahoe 58.92 88.98
TCP-Real 34.72 151.00
TCP-Reno 148.44 35.32
TCP-Tahoe 160.30 32.71
TCP-Real 152.11 34.47
TCP-Reno 430.43 12.18
TCP-Tahoe 324.40 16.16
TCP-Real 152.71 34.33
TCP-Reno 1635.26 3.21
TCP-Tahoe 1431.15 3.66

Table 7. TCP Goodput over WAN with Link Error
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Test Settings Protocol
Reverse Path Transmission Goodput 

TCP-Real 16.96 309.10
TCP-Reno 9.93 528.20
TCP-Tahoe 9.93 528.20
TCP-Real 16.00 327.64
TCP-Reno 10.31 508.52
TCP-Tahoe 10.03 522.51
TCP-Real 14.80 354.25
TCP-Reno 11.15 470.30
TCP-Tahoe 13.73 381.91
TCP-Real 17.51 299.46
TCP-Reno 25.29 207.29
TCP-Tahoe 23.47 223.39
TCP-Real 29.13 179.97
TCP-Reno 75.23 69.69
TCP-Tahoe 43.78 119.74
TCP-Real 42.76 122.62
TCP-Reno 113.32 46.27
TCP-Tahoe 152.22 34.44
TCP-Real 65.15 80.47
TCP-Reno 250.34 20.94
TCP-Tahoe 250.84 20.90

Table 8. TCP Goodput over WAN with Asymmetric Link Errors
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Test Settings Protocol Dropping Rate Connection Time (s) Goodput (KBps)
TCP-Real 208.75 251.16
TCP-Reno 461.62 113.58
TCP-Tahoe 508.79 103.05

1 0.99

Table 9. TCP Goodput with Handoff over WAN

 
 

 

   

Test Settings Protocol Dropping Rate
Application 
Percentage

TCP-Real 98.8%
TCP-Reno 92.0%
TCP-Tahoe 93.8%
TCP-Real 88.3%
TCP-Reno 88.0%
TCP-Tahoe 83.0%
TCP-Real 72.8%
TCP-Reno 56.8%
TCP-Tahoe 59.0%
TCP-Real 63.8%
TCP-Reno 38.3%
TCP-Tahoe 48.0%
TCP-Real 52.5%
TCP-Reno 19.0%
TCP-Tahoe 19.3%
TCP-Real 17.5%
TCP-Reno 5.3%
TCP-Tahoe 8.5%
TCP-Real 15.3%
TCP-Reno 1.3%
TCP-Tahoe 1.3%

Table 10. Application Success Percentage over WAN with Link 
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Test Settings Protocol Dropping Rate
Application 
Percentage

TCP-Real 98.8%
TCP-Reno 93.6%
TCP-Tahoe 93.6%
TCP-Real 98.8%
TCP-Reno 93.0%
TCP-Tahoe 93.4%
TCP-Real 92.2%
TCP-Reno 92.0%
TCP-Tahoe 87.2%
TCP-Real 82.2%
TCP-Reno 69.4%
TCP-Tahoe 73.4%
TCP-Real 53.6%
TCP-Reno 37.2%
TCP-Tahoe 58.4%
TCP-Real 50.8%
TCP-Reno 24.0%
TCP-Tahoe 19.8%
TCP-Real 31.6%
TCP-Reno 9.4%
TCP-Tahoe 12.2%

Table 11. Application Success Percentage over WAN with 
Asymmetric Link Erros
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Test Settings Protocol Dropping Rate Application Percentage
TCP-Real 64.71%
TCP-Reno 45.00%
TCP-Tahoe 43.29%

1 0.99

Table 12. Application Success Percentage over WAN with Handoff

 
 


