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Abstract— In this paper, we investigate the integration of heterogeneous network monitoring data. Specifically, 

we will synchronize and integrate flow-level records, exemplified by Cisco NetFlow, and packet-level traces, 

exemplified by NLANR PMA. The integration can facilitate cross-validation and complementary utility. 

However, finding the correspondences of timestamps/flows/packets between the PMA and Netflow is non-trivial, 

because they have different levels of granularity, different sampling strategy, different time sources, and different 

IP address masking. To integrate heterogeneous monitoring data, we first synchronize their timestamps, and then 

match their masked IP addresses. Our key observation is that although the IP addresses are masked, some other 

header fields can be exploited to match different types of monitoring data. In order to reduce the search space and 

the processing overhead, we have adopted a top-down approach to limit the search scope, and iterative algorithms 

to reduce the matching errors step by step.     
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I.     INTRODUCTION 

A. Background 

While the end-to-end design principle of Internet enables new applications to flourish without 

modifications to the network, it also makes network management a significant challenge. Therefore, 

developing advanced techniques to monitor, analyze and understand the dynamics of the Internet traffic is 

crucial. Traditionally, IP networks do not provide sufficient fine-grained monitoring supports. For example, 

SNMP allows network operators to obtain the total number of packets/bytes traversing a network link within a 

time period (e.g. 5 minutes). Recently, a number of fine-grained network monitoring toolkits have been 

developed. Each of them has their own strengths and weaknesses. It would be interesting to integrate different 

monitoring tools and cross-validate heterogeneous measurement data, such as Cisco NetFlow 

(http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html) and NLANR PMA 

(http://pma.nlanr.net/).   

NetFlow in Cisco routers periodically samples packets and counts the total number of sampled 

packets/bytes, for each TCP/UDP flow it has seen. The seven tuple (SrcIP, DstIP, SrcPort, 

DstPort, IP Protocol Number, ToS, Input Logical Interface) is used to uniquely 

identify a TCP/UDP flow. For each flow observed, it also maintains timestamps of the first/last sampled 

packets, cumulative OR of TCP flags, and routing information (such as address prefix masks, AS numbers, 

the IP address of the next hop router). In addition, ICMP traffic can also be recorded. According to a number 

of rules, flow-level records can expire, and are then encapsulated into UDP packets and exported to an 

external computer for offline analysis. As link speeds and the number of flows increase, keeping a counter for 

each flow is not scalable. This makes packet sampling a necessary compromise for performance and 

scalability. With packet sampling, not all packets of a long flow can be seen by Netflow, and some short 

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://pma.nlanr.net/
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flows might even not be recorded by Netflow. The selection of sampling interval is a tradeoff between the 

information accuracy and the processing overhead (Estan et al. (2004)).  

Table 1: NetFlow Record Format 

 

NetFlow Attribute Description 

Time- and Sampling- Related Attributes 

UNIX_SECS        Seconds since 0000 UTC 1970 

UNIX_NSECS       Residual nanoseconds since 

0000 UTC 1970 

SYSUPTIME  Time in milliseconds since this 

device was first booted 

SAMPLING_INTERVAL The sampling interval 

FIRST            System up time at start of flow  

LAST             System up time at the time the 

last packet of the flow was received  

Flow Attributes Available from Packet Headers 

DPKTS    Packets in the flow  

DOCTETS          Total number of Layer 3 bytes in 

the packets of the flow  

SRCADDR          Source IP address  

DSTADDR          Destination IP address  

SRCPORT    TCP/UDP source port number or 

equivalent  

DSTPORT TCP/UDP destination port 

number or equivalent  

PROT             IP protocol type   

TCP_FLAGS        Cumulative OR of TCP flags  

Routing-Related Attributes 

NEXTHOP          IP address of next hop router  

INPUT            SNMP index of input interface  

OUTPUT     SNMP index of output interface  

SRC_MASK         Source address prefix mask bits  

DST_MASK         Destination address prefix mask 

bits  

SRC_AS           Source AS number. 

DST_AS           Destination AS number. 
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Table 1 shows the relevant flow attributes in a NetFlow record (Version 5). We categorize these attributes 

into three groups: (a) time- and sampling- related attributes. (b)  flow attributes available from packet headers. 

These attributes are also available to sniffing-based packet traces, such as PMA. (c) routing-related attributes. 

These attributes are obtained from the routing mechanisms inside the router, and are thus unavailable to PMA 

packet traces. 

While NetFlow provides sampled flow-level records, the Passive Measurement and Analysis (PMA) 

provides unsampled packet-level traces. An optical splitter is inserted into a network link to sniff the packets 

traversing the link. A computer connected to the splitter then captures the TCP/UDP/IP header of every 

packet into a log file. Due to the storage overhead, typically PMA captures all packet headers in a short period 

of time every several hours (e.g., 90 seconds every 2 to 3 hours). A timestamp in microseconds and the 

ingress interface number are associated with each packet header.  

Table 2 shows the trace file format of PMA, which contains all the information in IP header and most of 

the fields in the layer 3 header (e.g. TCP/UDP header). 

Table 2:  PMA Trace File Format 
 

Timestamp (seconds) 4 bytes 

Interface #  1 byte Timestamp (microseconds) 3 bytes 

IP Ver   4 

bits 

IHL 

4bits 

Type of Service 1 byte Total Length 2 bytes 

Identification 2bytes Flag 

4bits 

Fragment Offset 12 bits 

TTL 1byte Protocol 1 byte Header Checksum 2 bytes 

Source IP Address 4 bytes 

Destination IP Address 4 bytes 

Source Port 2 bytes Destination Port 2 bytes 

Sequence Number 4 bytes 

Acknowledgment Number 4 bytes 

DataOffset 

4bits 

Reserved Flags 6 bits Windows 

 

B. Goal and Approaches 

The goal of this research is to compare and integrate the flow-level records, exemplified by NetFlow, and 

packet-level traces, exemplified by PMA. That is, given two monitoring data with heterogeneous formats and 
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information, how to find the correspondences of timestamps/flows/packets, between the two? This is 

motivated by: (a) Cross Validation: With one type of monitoring data, we can examine the accuracy of 

network traffic represented by the other type of monitoring data. In fact, in section IV, we will demonstrate 

that based on the PMA data, we are able to discover a problem of NetFlow Version 5 with multicast packets. 

On the other hand, using Cisco NetFlow data, we revealed in section II that the PMA box may occasionally 

ignore some packets during a capturing period. (b) Complementary Utility: Once integrated, different 

monitoring tools can potentially complement each other. For example, PMA provides more details (packets 

vs. sampled flows) in its short capturing periods, outside of  which are only covered by Netflow. As another 

example, Neflow records export routing information (such as AS numbers and network masks) available only 

inside the router. PMA packet traces collected on a link, on the other hand, cannot provide this information. 

However, the task of comparison and integration is non-trivial, because it’s difficult to find the 

correspondences between these two types of network monitoring data even collected at the same location. 

First, while PMA provides packet-level traces, NetFlow provides flow-level records. More importantly, while 

NetFlow samples the incoming packet stream 24 hours a day, PMA attempts to capture all packets in a few 

short periods. Secondly, PMA and Netflow synchronize with different time sources with different precisions. 

Third, to protect privacy, the IP addresses from different monitoring data may be masked or anonymized 

using different algorithms. Even if the anonymization algorithms are the same, the actual mapping of IP 

addresses can be different, depending on different traffic observed (i.e. sampled vs. unsampled).   Finally, the 

processing algorithm must be efficient, since the size of monitoring data is huge. Scanning the entire data set 

to find the correlation is time consuming.  

To integrate NetFlow and PMA data, we first synchronize their timestamps, and then match their masked 

IP addresses. Our key observation is that although the IP addresses are masked, some other header fields are 

still available to facilitate finding the correspondences between different monitoring data. For example, the 

TCP/UDP port numbers can be leveraged even though different flows from different IP addresses may have 
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the same source/destination port numbers. Also, although the NetFlow records only provide the timestamps 

for the first and the last sampled packets, the TCP SYN flag can be used to identify the actual first packet in a 

flow, with which a one-to-one correspondence can be established. In fact, our data-driven approach can even 

deal with clocks losing synchronization completely (section II-C). 

In order to limit the processing overhead, we have adopted a top-down approach to reduce the matching 

errors step by step.  We first use a coarse-grained but light-weight approach to narrow down the timestamp 

difference to 1 minute. We then use a fine-grained approach to accurately (within 10 ms) estimate the 

timestamp differences in a reduced search space. We further effectively match the anonymized IP addresses, 

based on synchronized timestamps. 

C. Testbed 

We conducted our experiments on a campus network, as shown in Figure 1. The Cisco GSR router in 

Figure 1 is a high-speed connection point between Internet2, a campus network, and 9 non-US research and 

education networks. The non-US R&E networks are connected to an ATM switch, which is further linked to 

the Cisco router via an OC-3 line. The configuration of the ATM switch provides a virtual circuit between 

each non-US R&E network and the Cisco router.  

 

to non-US 

R&E 

Networks 

Interface 2 

Cisco GSR Router  

with Netflow            Interface 3 
 

Interface 1 

PMA 

Box 

ATM 

Switch 

East 

to Internet 2 

to campus network 

 

Figure 1.    Network topology and configurations 

CISCO NetFlow Version 5 is enabled on the Cisco GSR router. The NetFlow sampling interval is 100 

packets, and the expiration timer setting uses the default vales. Most of the traffic observed in the Cisco router 

is between Interface 1 (to Internet2) and Interface 3 (to ATM switch). A PMA box, provided and managed by 
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NLANR, is installed on the OC-3 link between the router and the ATM switch. The IP addresses in the PMA 

traces are all anonymized, and the anonymization algorithm is inaccessible to us. The mapping to the internal 

addresses is one-to-one, and does not change within each PMA capture. Typically an Abilene PMA trace is 

90-second long. With the help from NLANR, we obtained some long traces (10 minutes) on our PMA box for 

10 days, with 8 captures per day, in March 2005. All our experiments are based on these long PMA traces. 

The total size of PMA data is 19.34 GB (in TSH format, see Table 2), while the total size of raw Netflow 

binary data is 3.4 GB. 

The rest of the paper is organized as follows. Section II addresses the timestamp synchronization, and 

section III presents algorithms for matching masked IP address. Section IV describes some experiments based 

on the integrated monitoring data. Related work is discussed in section V and Section VI concludes the paper.  

II.    TIMESTAMP SYNCHRONIZATION 

In this section we present our approach to synchronize PMA and Netflow timestamps. To limit the 

processing overhead and reduce the synchronization errors step by step, this is divided into three major steps 

as described below in subsections A, B and C, respectively. 

A.     Traffic Aggregation and Interface Filtering 

Both NetFlow and PMA traces provide information to identify the ingress or egress interface of 

packet/flow. To reduce the search space, we will compare the eastbound PMA traffic only with the those 

NetFlow records with Interface 3 as the egress interface (see Figure 1). We will also compare the westbound 

PMA traffic only with those NetFlow records with Interface 3 as the ingress interface.  

B.    Coarse-Grained Timestamp Synchronization 

In PMA traces, a timestamp is associated with each captured packet header. In NetFlow, each flow is 

recorded with only two timestamps for the first and the last sampled packet of that flow, respectively. Based 

on the related Netflow record fields (i.e. UNIX_SEC, UNIX_NSEC, SYSUPTIME, FIRST, LAST, see Table 
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1), we can obtain the corresponding Unix time (in  milliseconds) of the first and the last sampled packet 

(denoted by NF_First_UnixTime  and NF_Last_UnixTime, respectively) for each flow, in terms of 

the router’s clock. The question is, what is the difference between the NetFlow time and the PMA time? Or, 

given NF_First_UnixTime or NF_Last_UnixTime of a flow in Netflow, what is the corresponding 

PMA time? This is an important issue, since knowing the timestamp difference can significantly reduce the 

search space of our IP matching algorithm (see section III). As we will show below, in some cases the 

difference between the two can be very large, and increases / decreases slowly. Note that since the Netflow 

internal timestamps for the first/last flow packet are used, the Netflow setting of expiration timer is irrelevant 

here. 

We first use a coarse-grained algorithm to obtain the approximate time difference (accurate to 1 minute).  

We observe that although IP addresses are masked, some other header fields, such as the source/destination 

port and the IP protocol number, are not masked (masking these fields is not necessary from the privacy point 

of view, and can make the monitoring data less useful), and exist in both monitoring data. Thus we have  

Observation 1: Different flows from different IP addresses may have the same source or destination port 

numbers. However, within different time periods, a backbone link is likely to see some flows with unique 

source and destination port pairs. This information can be exploited to identify the timestamp difference 

between Netflow and PMA.  

For example, for the Web traffic, although the server side port number is often 80, the client side port number 

depends on the available ports on different machines at the time of connection establishment. Since Web 

traffic consists of many short-lived flows, this can be exploited to differentiate different time intervals. 

 

Figure 2.    Dividing NetFlow trace to 1-min segments. 
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The coarse-grained algorithm can be illustrated by Figure 2. NetFlow has flow records for the entire 24 

hours of one day. A PMA trace captures the packets in an interval T of 10 minutes. Assume that 

T=[PMA_t1, PMA_t2]. That is, it starts at PMA_t1 and ends at PMA_t2 in terms of the PMA clock. The 

question is how to align T with the corresponding NetFlow time. We have:  

Observation 2: Within T, all flows observed by NetFlow should also be observable in the PMA trace; 

Outside T, not all NetFlow records can be also observed in the PMA trace, especially on a highly multiplexed 

backbone link. 

We thus divide the NetFlow data of one day into 1440 one-minute segments  (Figure 2), according to 

NetFlow timestamps. For each TCP/UDP flow record of NetFlow, a tuple (SrcPort, DstPort, IP Protocol 

Number) is placed into the Netflow segments covering NF_First_UnixTime or NF_Last_UnixTime. 

This tuple from NetFlow is said to be shared by PMA, if any packet anywhere inside the 10-minute PMA 

trace has a packet with the same source port, destination port and protocol number. For each 1-minute 

segment, we calculate the matching rate of this segment, defined by: 

tthe SegmenTuples in Number of 

y PMAt Shared bthe SegmenTuples in Number of
RateMatchingSegment =__  

The 11 consecutive segments with the highest average matching rate will be selected by the coarse-grained 

algorithm. Note that 11, instead of 10, consecutive segments are selected, because PMA_t1, the starting time 

of T, is not necessarily aligned with the boundary of NetFlow segments.  The first and the last selected 

segments can have relatively lower matching rates, since they may contain flow records outside T. However, 

all the other 9 internal segments should have a matching rate close to 100%. The timestamp synchronization 

error, determined by difference between the starting time of the first selected segment and PMA_t1, is 

bounded by 1 minute. 
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Figure 3.    Segment matching rate with one PMA trace 

Figure 3 shows the matching rates of NetFlow segments with one PMA trace of westbound traffic. The x-

axis is the relative time of NetFlow in one day, while the y-axis gives the corresponding segment matching 

rate. A peak period of approximately 10 minutes, from 738 minute to 748 minute, can be clearly distinguished 

from the other segments. 

 

Time (min) 

Figure 4. Zoom in the peak period 

The peak period in Figure 3 is amplified in Figure 4. We can see that the matching rates of selected 

segments are very close but not equal to 100%. The 9 internal segments have matching rates lower (around 

98.5%) than what we have expected. To discover the reason behind this, we plotted in Figure 5 the unmatched 

Netflow records in the peak period.  Each dot in the figure represents an unmatched flow. The x-axis is the 
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NF_First_UnixTime of the unmatched flow, while the y-axis is the protocol number in the IP header. Most of 

the unmatched flows have a protocol number of 1 (ICMP). The ICMP header does not have the transport 

layer port number. PMA and NetFlow have different (undefined) ways to fill the port number fields in their 

records 
1
. We recalculated the matching rates after removing ICMP records. Figure 6 shows the results. 

Compared to Figure 4, the peak in Figure 6 is flat at the top, and the matching rate is very close to 100%.  
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Figure 5: The protocol number of the unmatched flows  

 

 

 
Figure 6: Zoom in the peak without ICMP records 

 

However, there are still a number of TCP (protocol number 6) and UDP (protocol number 17) flows 

unmatched even in the 9 internal segments, as shown in Figure 5. Note that the westbound traffic (see Figure 

1) travels through the PMA box before it arrives at the Cisco router. And yet a flow record found in NetFlow 

                                                           
1
 We found that in Cisco NetFlow Version 5, the source port number field is actually filled with ICMP message type 

and subtype, which are not as diverse as port numbers and cannot be used to differentiate ICMP packets 
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can be unmatched by PMA. This might relate to the fact that PMA uses a splitter to “divert” a small 

percentage of the optical energy to its detector, which in rare cases might not be able to decode the thus 

“artificially attenuated” packets. This finding confirms one value of our study: we may use sampled flow-

level data to discover operational problems in the more-detailed packet-level traces. 

 

Figure 7.    Max matching rate of NetFlow segments with 8 PMA traces 

To further validate the matching algorithm we performed another analysis. We have 8 PMA trace files 

captured per day, each of which is compared with the NetFlow data using our algorithm. For each NetFlow 

segment, Figure 7 shows its maximum matching rate among the 8 PMA traces in one day. The x-axis is the 

relative time of NetFlow in one day, and the y-axis is the maximum matching rate. It can be seen that the 

corresponding 8 peak matching-periods can be easily identified for the 8 PMA traces. 

We then further calculate the time intervals between successive PMA captures (in PMA timestamps) and 

the time intervals between successive peak matching periods (in NetFlow timestamps), shown in Table 3. The 

latter should be a multiple of 60 seconds, since the segment length is 1 minute. By comparing the column 2 

and the column 3 in Table 3, we can see that the difference between the two columns is always less than 45 

seconds. This verifies that our coarse-grained algorithm has an error upper-bound of 60 seconds, in highly-

multiplexed backbone links. Results with the other 10 days of monitoring data are similar. 
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 Table 3.    The time intervals between successive PMA captures of one day 

Successive 

PMA traces 

Intervals between 

successive PMA Traces 

in PMA timestamps 

Intervals between 

successive peak matching 

periods in NetFlow 

timestamps 

1 à 2 9404 s 9420 s 

2 à 3 9405 s 9360 s 

3 à 4 13007 s 13020 s 

4 à 5 9404 s 9420 s 

5 à 6 13005 s 13020 s 

6 à 7 9405 s 9360 s 

7 à 8 9405 s 9420 s 

 

C.    Fine-Grained Timestamp Synchronization 

Next we will reduce the estimation error in a reduced search space. Based on the coarse-grained algorithm, 

we are able to reduce the search space of NetFlow data to 11 segments. We further want to find a timestamp 

pma_ts associated with a PMA packet pma_packet, and a timestamp nf_ts in NetFlow associated with 

a packet nf_packet (either the first or last sampled packet of a flow), such that pma_packet and 

nf_packet actually are the same packet. Then the timestamp difference between Netflow and PMA will be 

nf_ts - pma_ts. However, identifying the same packet in both PMA and NetFlow traces is difficult due 

to the reasons outlined in section I. The good news is, to synchronize timestamps, we just need to identify 

some but not all of the packets that appear in both traces.  

The first/last packet of a flow sampled by NetFlow is not necessary the first/last packet of the flow 

observed by PMA. However, for TCP flows, whenever a TCP SYN segment (a TCP segment with its SYN 

flag set) is sampled by NetFlow, the SYN flag in the corresponding flow-level record will be turned on (see 

Table 1). A TCP SYN segment is the first segment of a flow in each direction (either the forward or reverse 

path). Thus, when the SYN flag of a NetFlow record is set, the actual first segment of the TCP flow has been 
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sampled by NetFlow. The packet that NF_First_UnixTime is associated with, is actually the first packet 

of that flow in that direction observed by PMA. Hence we can establish an exact correspondence between the 

two timestamps from NetFlow and PMA, respectively. Following (Duffield, Lund and Thorup (2003)), we 

call these flows “TCP SYN flows”. Note that since a TCP SYN segment might be retransmitted, we simply 

skip those TCP SYN segments occurring more than once in the PMA trace, 

The remaining question is: how can we tell whether the two flows in NetFlow and PMA, respectively, are 

the same flow when IP addresses are masked differently? Since we just need to identify some but not all the 

packets appearing in both traces, we can look for those TCP flows who has a unique tuple (source port, 

destination port) in both PMA and NetFlow traces. For these flows, we can be sure that the two flows are the 

same flow.  

The Figure 8 below shows the timestamp differences of the two directions of traffic, respectively. Each dot 

in the figures represents a TCP SYN segment selected by our algorithm. The x-axis is the relative time of a 

10-minute PMA trace, and the y-axis is the corresponding timestamp difference minus 18400s.  
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                             (a) west-bound traffic                                                          (b) east-bound traffic 

Figure 8.    Timestamp differences for 1 PMA trace 

The NetFlow time is supposed to synchronize with a NTP server and the PMA time is supposed to 

synchronize with a CDMA network (Micheel, Donnelly and Graham (2001)). However, as shown in Figure 8, 

the absolute value of timestamp differences is unexpectedly large, and can be as high as 5 hours. After a 
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detailed examination of monitoring data,  it seems that PMA loses the CDMA time signal and uses the line 

CP signal instead. Even so, the traffic in both directions share a common characteristic:  the range of 

timestamp difference is limited to a 12-millisecond scope. That is, although there is a large difference 

between the two timestamps, the variation of difference falls within a narrow range in a short period of PMA 

packet capture. This can be exploited to provide a fine-grained estimation of timestamp difference for each 

PMA trace with an error bounded to a number of milliseconds.  

We also observe that the timestamp difference gradually increases over time with the eastbound traffic, 

while the timestamp difference fluctuates with westbound traffic. The fluctuation with westbound traffic may 

be due to the dynamics of queuing delay and the traffic load on the interface card. 
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                                (a) west-bound traffic                                                  (b) east-bound traffic  

Figure. 9. Timestamp difference for 8 PMA traces 

To further investigate this pattern, in Figure 9 we draw the diagram for the 8 PMA traces of one day in 

both directions. Each dot in the figure represents to a selected TCP SYN segment from one of the PMA trace. 

Notably, the range of the y-axis is 3 seconds (vs. 15 ms in Figure 8) now. Since within each PMA trace the 

timestamp differences are within a narrow range of several milliseconds, the dots for the same PMA trace are 

clustered together as a single large point and hence not discernible in the figure. On the other hand, the 

variation of timestamp difference could be higher than 1 second across difference PMA traces. In Figure 9(a) 

we can see that the time difference in the westbound direction jumps by 1 second every 3 traces. For the 
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eastbound traffic shown by Figure 9(b) the difference increases linearly with a certain rate (interestingly, a 

rate close to the increasing rate shown in Figure 8(b)) as time goes by. Regardless, the timestamp difference 

increases about 2 seconds per day, indicating loss of synchronization. This means that the timestamp 

difference obtained with one PMA trace cannot be reused for the other traces. Therefore, the fine-grained 

algorithm should be applied to each PMA trace to reduce the estimation error to milliseconds. We have tested 

our algorithm with monitoring data of the other days, and the conclusions are similar.  

Thus, by applying the fine-grained matching algorithm to each PMA trace, our data-driven approach can 

reduce the estimation error of timestamp difference to a number of milliseconds, even when clocks lose 

synchronization and the absolute timestamp difference is large and slowly increases / decreases. 

D. Algorithm Discussion 

Due to anonymized IP addresses, we can only use the pair of source/destination ports to identify flows and 

determine whether a flow record from NetFlow also appears in PMA. Obviously this may lead to “false-

positives” with the coarse-grained algorithm, because different flows with different real IP addresses may 

have the same port pair. To be more specific, it may falsely increase the matching rates of NetFlow segments 

outside the scope of T. However, as we have demonstrated through real-world traffic data, it’s robust enough 

for the purpose of coarse-grained timestamp synchronization for a highly-multiplexed network link. 

One may also set the NetFlow segment size to be 10 minutes, instead of 1 minute. However, since 

PMA_t1 is not necessarily aligned with the boundary of NetFlow segments, a 10-minute PMA capturing 

interval [PMA_t1, PMA_t2] is very likely to overlap with two 10-minute NetFlow segments, each of which 

may have a relatively low matching rate.  Hence, it will be difficult to identify them from a “noisy” 

background, since IP addresses are masked and only port information is used. Furthermore, with 10-minute 

NetFlow segments, the error bound of coarse-grained timestamp synchronization will be 10 minutes, instead 

of 1 minute. 
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In section II-B, when calculating the matching rate for each segment, we compare 1-minute of NetFlow 

segment against the 10-minute PMA data. An alternative approach is to first compare the PMA data with the 

first 10 NetFlow segments of the day, and then repeatedly remove the first NetFlow segment and compare the 

PMA data with the first 10 segments of the remaining NetFlow data. The PMA data are also divided into 10 

1-minute segments, and in each step a NetFlow segment will only be compared with the corresponding 1-

minute segment in PMA. However, again, since the boundaries of PMA segments are unlikely to be aligned 

with those of NetFlow segments, all the 9 internal segments of the peak period can end up with low matching 

rates, which makes it difficult to identify the peak matching period. 

III.    MATCHING ANONYMIZED IP ADDRESSES 

Since the IP addresses of NetFlow or PMA traces are anonymized, a critical issue of integrating flow-level 

and packet level traces is to find the correspondence between the anonymized IP addresses so that a NetFlow 

record can be exactly mapped to the corresponding flow in the PMA trace. This is achievable if, within one 

system, the IP address masking is a one-to-one mapping between real IP addresses and anonymized internal 

addresses, although the exact mapping might be different with PMA and Netflow. We have developed a 

simple algorithm based on port pairs and the coarse-grained timestamp synchronization (see subsection A 

below) and a more sophisticated algorithm to improve the matching rate, based on the fine-grained timestamp 

synchronization (subsection B). 

A. Simple IP Address Matching Algorithm 

For IP address matching, a PMA trace will only be compared with Netflow flows overlapping with the 11 

NetFlow segments selected by the coarse-grained synchronization algorithm described in section II-B.  

In section II-C, we have shown that if the source and destination port pair is unique among flows in both 

NetFlow and PMA,   we can conclude that the two flows in different monitoring data are actually the same 

flow, and two IP address mappings (source IP mapping and destination IP mapping) can be derived. If the 
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port pair is not unique, then the exact mapping is ambiguous and we cannot decide which IP address in 

NetFlow should be mapped to which IP address in PMA. However, we have the following observation:  

Observation 3: For a non-unique port pair with matching ambiguity, if one of the masked IP address has 

been inferred (e.g. because it is either the sender or the receiver of another port pair which is unique), this 

information can be exploited to reduce the ambiguity: the flows with the inferred IP address as the source or 

destination IP can be placed into a separate set for comparison and matching.  

As an example, there are m flows in NetFlow and n flows in PMA that have the same port pair, where m > 

1 or n > 1. If an IP address ip_pma from PMA has already been mapped to an IP address ip_NetFlow 

from NetFlow (e.g. due to another port pair that is unique), then we can divide the flow set into three subsets: 

(a) NetFlow flows with  ip_NetFlow as source IP, and PMA flows with ip_pma as source IP 

(b) NetFlow flows with  ip_NetFlow as destination IP, and PMA flows with ip_pma as destination 

IP 

(c) NetFlow flows without ip_NetFlow, and PMA flows without ip_pma 

As can be seen, no PMA flow in one of the subset can be matched with a Netflow flow in a different subset. 

Therefore, matching can be performed within each subset. With the number of the flows to be compared 

reduced, potentially more mappings can be discovered, if any of these subset has only one flow from NetFlow 

and one flow from PMA. 

Our IP matching algorithm thus scans the list of port pairs from NetFlow (since NetFlow usually has fewer 

port pairs than PMA) and applies the above mechanism. It may happen that IP address mapping discovered 

later on in a scan can be used to remove the ambiguity with a non-unique port pair early in the list.  Therefore, 

our algorithm will run several rounds to match as many IP addresses as possible. After each round, the 

number of IP addresses matched may increase. The algorithm will terminate when the number of inferred IP 

addresses stops growing.  
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Table 4. Matched IP addresses in Each Iteration 

Rounds 

Number of  

Pending NetFlow 

Records 

Number of 

Matched IP 

Addresses 

0 13091 0 

1 7755 2999 

2 7477 3098 

3 7460 3101 

4 7460 3101 

 

Table 4 gives the results with a PMA trace and 11 NetFlow segments. The round 0 shows the total number 

of flow records in NetFlow. The following rows show the number of NetFlow records that have at least one 

IP address unmatched, as well as the total number of matched IP, after each round. The 2
nd

 and the 3
rd

 rounds 

improves the matching rate by 3%. The algorithm converges at the end of the 3
rd

 round, and only 43% of the 

NetFlow records can be matched. This matching rate is not sufficient, and hence we improve the matching 

rate further using the fine-grained synchronization. 

B. Sophisticated IP Address Matching Algorithm 

The basic idea of improvement is as follows. With the fine-grained synchronization algorithm, we can 

derive the timestamp differences between PMA and NetFlow, accurate to several milliseconds. Our 

observation is:  

Observation 4: Although it is likely that multiple flows with anonymized IP addresses use the same port pair, 

it is less likely that they send packets around the same time. This is especially true for short flows with a few 

packets, which is typical in web traffic.  

Given a NetFlow record, we know the timestamps of its first and the last sampled packets: 

NF_First_UnixTime, and NF_Last_UnixTime, respectively. When we search for the corresponding 

PMA flow, we will look at those PMA flows that not only have the same port pair, but also send packets 

around the PMA time corresponding to NF_UnixTime (either NF_First_UnixTime or 
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NF_Last_UnixTime). To be conservative with the estimation accuracy, the corresponding PMA 

timestamp shall fall in the range of  

[NF_UnixTime+(ts_diff_min–d), NF_UnixTime+(ts_diff_max+ d)] 

Here we assume that the timestamp difference extracted from TCP SYN segments is in the range 

[ts_diff_min, ts_diff_max] (see Figure 8), and d=ts_diff_max- ts_diff_min. 

[ts_diff_min–d, ts_diff_max+ d] is a relaxed estimation of the range of timestamp differences.  

This additional requirement is called “timing constraint”. Notably, once the accurate timestamp 

difference is derived based on TCP SYN flows (section II-C), the timing constraint can be applied to all 

TCP/UDP flows, and even packets of protocols without port numbers, such as ICMP. Since ICMP record 

does not have port numbers, the ICMP packet size (available if the total number of packets with an ICMP 

record is 1) is used to reduce the search space. Figure 10 gives the overall algorithm. We’ve added a 

verification mechanism into the algorithm: If the same IP address in PMA is matched to different IP addresses 

in Netflow, or vice versa, the inconsistency will be reported.  

 

 

do { 

for (each flow record in NetFlow) { 
 

  Based on Observation 3, reduce matching ambiguity by examining the inferred IP addresses. 
 

If (an ICMP record) { 

   If (the number of packet is 1)  

If (only one ICMP packet in PMA satisfies the timing constraint and meanwhile has the same packet size) { 

Establish a mapping between  src IP addresses; Establish a mapping between  dst IP addresses;  

     Report a mapping inconsistency, if any; 

} 

  } else 
 

  If (a TCP/UDP flow) { 

   If (only one flow in PMA has the same port pair and meanwhile satisfies the timing constraint){ 

Establish a mapping between  src IP addresses; Establish a mapping between  dst IP addresses;  

Report a mapping inconsistency, if any;  

   } 

  } 

} 

} while (the number of mapped IP addresses is still increasing); 

 

 

Figure 10. IP-address matching algorithm with fine-grained timestamp synchronization 
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In Table 5 we present the results of our algorithm with one PMA trace.   The total number of PMA packets 

is 10,002,842, while total number of Netflow records is 6676. We define the matching rate as the percentage 

of Netflow flows whose PMA packets can be identified by inferring the correspondences of source and 

destination IP addresses. The overall matching rate is 93%, while the matching rate for TCP is 95%. Notably, 

without the timing constraint, the overall matching rate drops to 41.9%. The significant improvement with the 

timing constraint is due to many short flows in the traffic. In addition, some of the unmatched NetFlow 

records are due to the missing port pairs in PMA (i.e. PMA traces may miss some packets that pass through 

them, see discussions in section II-B), rather than the matching ambiguity. 

Table 5.    Experiment results: IP address inference 

 
Total Number 

of Netflow 

Flows 

Successfully Matched Flows 

Entire 

NetFlow 
6676 

93% 

(without timing constraint: 

41.9%) 

TCP 5091 95% 

UDP 1272 89% 

ICMP 223 75% 

Others 90 82% 

 

We also tested our algorithm with monitoring data on different days with different traffic loads, and the 

results are similar. More importantly, no mapping inconsistency has been reported. 

IV.    INTEGRATING FLOW-LEVEL AND PACKET-LEVEL MONITORING DATA:  CROSS-

VALIDATION 

With the accurate timestamp synchronization and the IP address mapping table, we can integrate and 

compare the related information in both packet-level and flow-level monitoring data. We now demonstrate the 

results of cross-validation, as an example. 

We studied the total number of packets going through the OC-3 link (see Figure 1) within a 10-minute 

PMA capturing time, based on the results of our timestamp synchronization algorithm. We compared the 
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estimated numbers based on Netflow and PMA, respectively. Shown in Table 6, mostly the numbers of 

packets from PMA is around 100 times the NetFlow numbers, reflecting that fact that the NetFlow sampling 

interval is set to 100 packets. However, somewhat surprisingly, some of the PMA numbers are much higher 

than 100 times the corresponding NetFlow numbers, especially for the eastbound UDP traffic. 

Table 6.   Comparison of total number of packets 

 PMA NetFlow 
PMA/NetFlow 

Ratio 

Total Packets 4174476 39953 104.48 

Westbound 

TCP packets 
971564 9744 99.71 

Eastbound 

TCP packets 
946961 9545 99.21 

Westbound 

UDP packets 
231511 2334 99.19 

Eastbound 

UDP packets 
1996258 18065 110.50 

 

To investigate the reason behind this, we then examined the PMA/NetFlow packet ratios at flow-level, 

thanks to our IP matching algorithm described in section III. Note that a sampling interval of 100 packets on 

the entire traffic does not necessarily mean that each flow’s PMA/NetFlow packet ratio will be close to 100, 

since the ratio with each flow depends on the flow size (Duffield, Lund and Thorup (2003)). However, it 

helps us to narrow down the scope and pinpoint the root cause. We identified those UDP flows that have 

abnormally high PMA/Netflow ratios and have sent large number of packets that can significantly affect the 

ratio of total traffic. We found that all those UDP flows are actually multicast traffic that came in from one 

port and went out to multiple ports. However, the output interfaces of these multicast flows are not correctly 

marked in Netflow records. Hence, with this cross-validation between flow-level and packet-level records, we 

discovered that multicast traffic is not correctly incorporated in Netflow Version 5, which can be verified by 

the Netflow manual.  
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Table 7.    Comparison of total number of packets (multicast traffic incorporated) 

PMA 

Traces 

Total PMA 

packets 

Total 

NetFlow 

packets 

PMA/Netflo

w Ratio 

1 5313018 53232 99.81 

2 7992868 79434 100.62 

3 8881071 89190 99.57 

4 9609340 95639 100.48 

5 8165544 81299 100.44 

6 4174479 41863 99.72 

 

Table 7 illustrates the results with 6 PMA traces, after the multicast traffic has been included into the 

NetFlow packet counts. The PMA/NetFlow ratio is very close to 100, which is the configured sampling 

interval of NetFlow. We’ve also examined the estimations of total number of bytes, based on PMA and 

Netflow respectively. The results are similar. 

We further study the accuracy of NetFlow total packet estimation in shorter time intervals. For example, if 

we divide the 10-minute capturing time into 10 intervals of size 1-minute, what will be the average accuracy 

of NetFlow estimation in each interval? We use the PMA data as the “base-line” and examine how much 

NetFlow-derived estimation deviate from the baseline. We are interested in how small this time interval can 

be, given accuracy requirements on the NetFlow-derived packets estimation (we hope this interval is as small 

as possible so that we can understand the “real-time” status of the network). The estimation error rate is 

defined as   

(Packet_Number_in_PMA – Packet_Number_in_NetFlow * 100) / Packet_Number_in_PMA,  

where Packet_Number_in_PMA is assumed to be accurate, due to the 1:1 sampling ratio. The NetFlow 

estimation error will increase with a smaller time interval, to which the error of timestamp synchronization 

will be more significant. In addition, we assume that the flow packets sampled by NetFlow are uniformly 

distributed within [NF_First_UnixTime, NF_Last_UnixTime], which may lead to non-negligible 

error when the time granularity is small. As shown in Table 8, when the time interval decreases, the error rate 
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will increase, and in general the interval should be longer than 30 seconds, if the error rate is required to be 

less than 5 percent. 

Table 8. Estimation Accuracy of NetFlow on Total Number of Packets 

Duration 
Max Error Rate % 

(Westbound) 

Max Error Rate 

% (Eastbound) 

10s 9.1591 7.1555 

30s 4.8804 5.1238 

60s 4.3041 4.2317 

120s 2.4096 0.7985 

 

V.    RELATED WORK 

The periodical sampling of NetFlow can be improved for advanced traffic analysis. Estan et al. (2002) 

improves NetFlow based on the observation that a small number of “heavy hitters'” accounts for a large share 

of traffic.  It introduces a scheme that concentrates only on large flows.  Zhang et al. (2004) focuses on online 

identification of 1-D and 2-D hierarchical heavy hitters. Estan et al. (2004) proposes an adaptive NetFlow, 

which dynamically adapts the sampling rate to achieve robustness without sacrificing accuracy. Kumar et al. 

(2004) presents a novel data streaming algorithm providing much more accurate estimates of flow 

distribution. These works focus on how to improve NetFlow. However, a NetFlow optimized for one purpose 

(e.g. identifying top flows) may not be sufficient for other analyses. 

Sommer and Feldmann (2002), Duffield, Lund and Thorup (2002), Duffield and Lund (2003), Duffield, 

Lund and Thorup (2003), Mori et al. (2004) perform analysis based periodically packet-sampled flow-level 

records. Duffield, Lund and Thorup (2002) discusses how to infer the traffic properties from the packet-

sampled flow statistics. Duffield, Lund and Thorup (2003) provides methods to infer the absolute frequencies 

of flow lengths in the unsampled stream. The TCP SYN flag is utilized to estimate original TCP flows. 

Duffield and Lund (2003) samples NetFlow records to further reduce the processing overhead. Mori et. al 

(2004) investigates how to identify elephant flows based on Bayes’ theorem. Our work complements these 

works by integrating packet-level traces and performing cross-validation.  Furthermore, the system 
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characteristics (rather than the sampling characteristics only) of network monitoring devices are captured. 

We’ve also considered anonymized IP addresses. 

Traffic analysis based-on packet-level traces is also an important direction. McGregor et al. (2004) utilizes 

the timestamps in packet-level traces and the packet inter-arrival time (IAT) to classify applications.  

Synchronizing clocks or timestamps is a well-studied area. Veitch, Babu and Pasztor (2004) studies 

synchronizing the software clock with the standard time. Paxson (1998) and Moon, Skelly and Towsley 

(1999) remove clock skews in delay measurements. The goal of our timestamp synchronization algorithm is 

to integrate packet-level and flow-level records. Our approach is data-drive, rather than based on models of 

clocks or transit delays. 

Finally, many research works have been done in data-centric information processing, such as Rupp et al. 

(2004), and Estan, Savage and Varghese (2003) 

VI.    CONCLUSION AND FUTURE WORK 

In this paper, we investigated the integration of flow-level records, exemplified by Cisco NetFlow, and 

packet-level traces, exemplified by NLANR PMA. To integrate heterogeneous monitoring data, we first 

synchronize their timestamps, and then match their masked IP addresses. Our key observation is that although 

the IP addresses are masked, some other header fields can be exploited to match different types of monitoring 

data. In our future work, we will apply the data mining techniques on both flow- and packet- level 

information, possibly using the PMA data as training sets to set up a Neural Network learning model and then 

using the learned model and NetFlow data to estimate the real-time status of the network. 
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