
The Journal of Supercomputing, 20, 115–135, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Wave & Probe Communication Mechanisms
VASSILIS TSAOUSSIDIS, A. LAHANAS AND C. ZHANG �vassilis,ladrian.czhang�@ccs.neu.edu

Computer Science, Northeastern University, Boston, MA 02115

Abstract. This paper is motivated by the modifications recently suggested to enhance TCP performance
over wireless channels. We argue that TCP end-to-end error-control mechanism lacks the functionality to
respond appropriately in situations where errors vary in nature, frequency, or duration. As a result, this
mechanism could, under some circumstances, yield zero throughput achievements at high energy-cost,
or degrade throughput performance without conserving energy. This incompetent behavior with respect
to the energy/throughput tradeoff puts in question TCP’s suitability as a universal, reliable transport
protocol of choice, especially for battery-powered mobile devices for which energy is a critical resource
and congestion is not the exclusive cause of errors.

We propose “Wave” and “Probing” communication and control mechanisms that permit end-to-end
protocols to detect congestion without necessarily experiencing packet drops, to distinguish random and
burst errors from congestion, and, as conditions vary, to rapidly adjust the transmission window upwards
or downwards depending on the nature of the error. We report extensively on the performance of these
new mechanisms to demonstrate their energy-conserving and high-throughput capabilities.

Keywords: transport protocols, energy saving, error control, mobile computing

1. Introduction

Mobile computing requires a universal solution for error control, combining energy
efficiency and high throughput capacity over heterogeneous networks with both
wireless and wired components. Error control mechanisms are the central com-
ponent of reliable protocols. They affect a protocol’s performance with respect to
throughput, energy expenditure, and reliability. Error control is usually a two-step
process: error detection, followed by error recovery. Most transport protocols such
as TCP detect errors by monitoring the sequence of data segments received and/or
acknowledged. When timeouts are correctly configured, a missing segment is taken
to indicate an error, namely that the segment is lost. Reliable protocols usually
implement an error recovery strategy based on two techniques: retransmission of
missing segments; and downward adjustment of the sender’s window size and read-
justment of the timeout period. While the net outcome of the recovery process
has to be the retransmission of the missing segments, the nature of the error actu-
ally should play a determining role in defining the recovery strategy to be used.
When network conditions deteriorate to an extent that they become the ground for
more-or-less persistent error conditions, a back-off strategy seems to be the cor-
rect choice for the sender. On the other hand, conditions of random and short
or infrequent burst errors could require an aggressive behavior instead. In other
words, error frequency and duration are two important characteristics that need
to be ascertained during the error detection process in order to determine the
appropriate recovery strategy.

116 tsaoussidis et al.

This work addresses these concerns by proposing “Wave” and “Probing”
communication and control mechanisms that permit detection of congestion
without necessarily entailing packet drops, ascertain error frequency and dura-
tion, and, as conditions vary, rapidly adjust the transmission window upwards or
downwards depending on the nature of the error. In Section 2 we review recent
modifications and enhancements of TCP, and discuss the energy/throughput lim-
itations inherent to its error control mechanism. In Section 3 we present our
proposed mechanisms and describe their implementation in the Wave & Wait
Protocol (WWP) [11, 12], an experimental protocol based on Waves and Probing.
Section 4 presents extensive comparative results on TCP and WWP with respect
to such characteristics as: performance under combinations of random, burst,
short, and persistent errors; the impact of energy expenditure on throughput under
various error conditions; and the energy/throughput tradeoff. Finally, Section 5
presents some concluding remarks.

2. TCP overview

Reliable protocols such as TCP [9] are tuned to perform well in traditional wired
networks where transmission losses occur mostly due to congestion. In the stan-
dard TCP versions the receiver can accept segments out of sequence, but delivers
them in order to the protocols above. The receiver advertises a window size and
the sender ensures that the number of unacknowledged bytes does not exceed this
size. For each segment correctly received, the receiver sends back an acknowledg-
ment, which includes the sequence number identifying the next byte expected in
correct sequence. The transmitter implements a congestion window that defines
the maximum number of transmitted but unacknowledged bytes permitted. This
adaptive window can increase and decrease, but never exceeds the receiver’s adver-
tised window.
TCP has four more-or-less standard algorithms to perform the congestion control

operations described above: Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery [1]. They differ from each other essentially in the way that the
congestion window is manipulated in response to acknowledgments and timeouts,
and the manner in which delivered or missing segments determine action. The ini-
tial single-segment congestion window effectively grows exponentially (slow start)
until a threshold is reached. Beyond that point additive increase (congestion avoid-
ance) takes over. When packets are lost and retransmission timeout event occurs,
the cwnd is set to double the maximum segment size, and the congestion window
threshold is set to half the window size that existed prior to the timeout event. In
Fast Retransmit, a number (normally 3) of successive duplicate acknowledgements
(dacks), a suggestion of segment loss, trigger off a retransmission without waiting for
the associated timeout event to occur. After that, slow start is applied. TCP Reno
introduces Fast Recovery [1] in conjunction with Fast Retransmit. Fast Recovery
sets the congestion window to half the value prior to Fast Retransmit, rather than
performing Slow Start, after the retransmitted segment gets acknowledged.

the wave & probe communication mechanisms 117

Recently, TCP behavior over wireless and wired networks has been a focus of
attention. New approaches or modifications have been proposed. Some use essen-
tially the standard algorithm(s) at the receiver, but implement different variations
of the transmission process at the sender. Others, however, propose variations
of the acknowledgment strategy at the receiver. TCP’s behavior over wired net-
works, where congestion is a regular cause for packet loss, was initially studied
by Jacobson [5]. Later, modifications were suggested to upgrade the protocol’s
throughput performance by adopting occasionally more aggressive retransmissions,
delaying acknowledgments when congestion appears to be the problem, applying a
conservative retransmission algorithm when energy consumption is a significant con-
cern, or modifying the functionality of intermediate devices (routers, base station)
in order to assist the two ends in efficiently monitoring current network conditions
without undergoing packet drops. Recent research results [2, 3, 6, 7] have, in fact,
shown that TCP throughput degrades, in the presence of the kind of random and
burst errors typical of wireless environments. However, the enhancements proposed
[2, 10], require intervention at the router or base-station level, and, in general, the
splitting up of the end-to-end characteristic of TCP behavior. Ramakrishnan and
Floyd [10] propose an Explicit Congestion Notification capability to be added to
the IP protocol (an approach similar to RED Gateways) in order to trigger appro-
priate behavior of TCP congestion control, and possibly enhance its performance
by explicitly notifying it of the developing congestion. An obvious drawback of this
proposal, as stated by the authors themselves, is the fact that asymmetric routing
will necessarily ensue. In addition, the end-to-end autonomy of TCP will be dam-
aged, yet the problem will be only partially solved: the level of congestion will not be
effectively estimated, since detection occurs only as a function of routers’ threshold
values which, moreover, might differ from router to router. Floyd and Henderson
[4] propose a partial acknowledgment method to enhance performance of the TCP
Fast Recovery algorithm which, under rather specific conditions, results in some
improvement [13].
The work discussed in the preceding paragraph does not, however, address energy

issues. Reference [15] is virtually the only research currently available, which explic-
itly does address TCP energy consumption. The authors investigate and report on
the throughput and energy consumption of various versions of TCP under random
and correlated (burst) errors. They conclude that, with the correct parameter set-
tings for maximum window size and fast retransmit threshold, TCP Tahoe, in partic-
ular, does a good job at saving energy because it backs off in the presence of burst
errors. Their work leaves for future investigation the important issue of the energy
efficiency tradeoffs involved when backing off increases delays, and hence the over-
all connection time. Since the energy consumption of TCP has not been studied in
any context outside of the comparative performance of the various versions of TCP
itself, it is not yet quite clear how successful is TCP’s job at saving energy. The
basic question, after all, is not so much how energy can be saved in the context of
this or that protocol, but rather how can it be efficiently expended to achieve high
throughput. Although one might naively expect that expending more energy (in the
form of transmission power) should result in better throughput, [11, 12, 13] show

118 tsaoussidis et al.

that this is not always true. Energy and throughput do not necessarily constitute a
zero-sum tradeoff.
TCP displays some undesirable patterns of behavior in the context of efficient

energy expenditure that aspires to high throughput. The error recovery mechanism
is not always efficient, especially for wireless networks, since packet loss is invari-
ably interpreted by the protocol as resulting from congestion. For example, when
relatively infrequent random or short burst errors occur, the sender backs off and
then applies a conservatively graduated increase to its reduced window size. During
this phase of slow window expansion, opportunities for error-free transmissions are
wasted and communication time is extended. In other words, in the presence of
infrequent and transient errors, TCP’s back-off strategy avoids only minor retrans-
missions at the cost of unnecessary and significantly degraded throughput, and
increases overall connection time, as our test results will show. Yet, when an error
occurs and TCP does back off, it continues to forcefully attempt transmissions within
the constraints of the reduced window size. In the presence of errors of a relatively
persistent nature (fading channel, prolonged and frequent burst errors), this behav-
ior does not favor energy-saving since it yields only minor throughput improvement
at high cost in transmission energy. In summary, from the perspective of energy
expenditure in the context of mobile networks, TCP would seem to possess an inher-
ent tendency to back off too much when it should not, and too little when it should.
The central problem lies in the inability of TCP’s mechanism to correctly detect the
nature of the error, and so it is incapable of responding in an appropriate manner.
In addition, the protocol lacks the ability to efficiently monitor network conditions,
rapidly readjust its window size in response to changes in these conditions, and
detect congestion without inducing packet drops, thereby degrading overall perfor-
mance through additional retransmissions and wasted opportunities in maintaining
the communication pipe full. In order to efficiently expend energy that achieves high
throughput, an end-to-end protocol would need to possess two broad characteristics:
1. The ability to efficiently monitor the network on an end-to-end basis, and deter-
mine the nature of errors. This capability, if it is to be energy-conserving, must
depend on something other than the traditional approach of attempting costly data
transmissions and seeing if they get through within a certain maximum round trip
time (RTT). 2. The flexibility to rapidly adjust the sender’s transmission window
upwards or downwards in response to detected error conditions.

3. Waves and probing

We present two mechanisms, “Waves” and “Probing,” which together provide the
necessary functionality outlined at the end of the previous section. We also describe
the implementation of these mechanisms in the current version of the Wave and
Wait Protocol (WWP). WWP is an experimental protocol we have developed as
a test-bed transport-level protocol, running on top of IP and based on Wave and
Probing mechanisms. Full details of WWP may be found in [11, 12]; here we shall
focus specifically on the implementation of Waves and Probing in the protocol.

the wave & probe communication mechanisms 119

3.1. Waves

When network conditions appear acceptable and data transmission can be efficiently
undertaken, the receiver could use the successive segments reaching it to effectively
monitor network conditions, if it had some knowledge of the sender’s transmission
pattern of these segments. Furthermore, the receiver could then instruct the sender
to readjust its transmission window upwards or downwards in response to what it
has learned. The receiver could even request that the sender suspend transmis-
sions altogether if it concludes that conditions have deteriorated beyond the point
where energy-conserving transmission is possible for the present (i�e., there is a high
risk of too many data segments being lost, necessitating too many retransmissions).
In order to provide this kind of capability, we propose that transmission between
sender and receiver take place in “waves” of fixed-sized data segments.
A wave is group of fixed-sized data segments of predetermined number. The

mechanism defines various levels of waves, where the higher the level, the more data
segments that the wave comprises (i�e., the larger the current sending window). The
sender groups data segments into a wave at the appropriate level, determined by
the receiver’s experience of prevailing network conditions, and then transmits these
segments one after the other, with no pause between one segment and the next. It
then pauses, awaiting a response from the receiver. Cognizant of the current wave
level, the receiver implicitly has full knowledge of the sender’s transmission pattern
and can proceed by notifying the sender of missing segments from the current wave,
and, as outlined above, setting the next wave level based on monitored network
conditions.
The wave mechanism provides a very flexible capability to rapidly adjust the

sender’s window in response to monitored conditions. It enables swift, dynamic
readjustment along a wide spectrum of conservative-through-to-aggressive trans-
mission behavior, depending on the number of wave levels implemented, the pre-
determined number of data segments at each wave level, the size adopted for the
fixed-sized data segments, and the decision criteria according to which the receiver
determines the next wave level.

3.2. Implementation of waves in WWP

As already mentioned, the receiver attempts to estimate prevailing congestion
conditions by monitoring the throughput of the current wave and setting the level
of the next wave accordingly. A wave at level i (i >= 0) is composed of a fixed
number W �i� of data segments. For i = 0, W �0� is defined to be 0, signifying that
no further data transmission is to be attempted for now.
In WWP all segments (data and control) have a fixed-sized 6-byte header. A data

segment also carries a fixed-sized 1 Kbyte data payload. Once the first segment to
reach the receiver from a new wave arrives, it is easy for the receiver, given the
current wave level i (which is carried in the segment header), to calculate how
long it would take the rest of the wave to reach it if the network were relatively
uncongested, using a “baseline” throughput of BT KBytes per second for the

120 tsaoussidis et al.

uncongested network. The time thus calculated is the “baseline time.” The receiver
measures how long it actually takes for the remaining segments in the wave to
arrive. It then uses the baseline and measured times for the wave to set the level
of the next wave.
The baseline throughput BT is a protocol parameter whose value can be

determined empirically for the network on which the protocol is running, so as
to maximize protocol performance in line with the application’s throughput needs
and the amount of energy-saving that it is willing to trade off in return for higher
throughput. BT would typically be set at some fraction of the (average) maximum
effective throughput the network is capable of under congestion-free conditions.
The exact value would, in general, depend on how stable general network condi-
tions are, as well as on the inherent throughput capabilities of the network. The
closer the value set for BT is to the network’s maximum effective throughput,
the less aggressive the protocol will be in attempting transmissions, since it will
attempt transmissions at higher wave levels only when current network through-
put gets close to the maximum possible, and there will be a strong bias towards
selecting lower wave levels, including wave level zero, as the current throughput
falls below that maximum. In a relatively stable and uncongested network environ-
ment, it would probably pay off to be somewhat more aggressive, and so BT should
be set lower. In a relatively congested network with rapidly varying conditions,
BT should be set higher to make the protocol’s behavior more conservative and
less aggressive. However, a wide range of wave levels would allow more flexibility
than a single parameter such as BT is, by itself, capable of providing, permitting
the protocol to automatically adjust its behavior across a broader variety of net-
work environments, as well as to accommodate more variability in the operational
characteristics of any single environment. Our current WWP implementation calls
for four wave levels, i = 0� 1� 2� 3, with the number of segments in a wave set at
W �i� = �12 × i� for i = 0� 1� 2� 3; fixed-sized segment payload is set to 1 KByte.
The following simple algorithm is used by the receiver to set the next wave level:
Suppose the current wave is at level i, i = 1� 2� 3.

Let T�i� be the measured time for a level i wave.
Let B�i� be the baseline time for a level i wave.
For j = 1, 2, 3:

if T�i� is in the range �j− 1� j� × B�i�,
then next wave level is set to �4− j�;
else set wave-level to 0.

The algorithm essentially implies that when the receiver sets the new wave level
to k� k = 1� 2� 3, it is estimating the current network throughput to be no worse than
approximately a fraction 1/�4− k� of the baseline throughput value of BT KBytes
per second (and no better than approximately a fraction 1/�3− k�, for k = 1 or 2).
The number of segments in the new wave is then adjusted proportionately. If the
throughput appears to be less than 1/3 of the baseline throughput, we go to level
0, deeming it better to pause for a while than risk expending energy transmitting

the wave & probe communication mechanisms 121

even a small wave that might not have a sufficiently good chance of getting through
undamaged.
Upon receiving a complete wave, the receiver responds by transmitting a

“N-S ACK” segment to the sender. N-S ACKs are control segments whose
variable-length payload field identifies all data segments to date that need retrans-
mitting. The header identifies the level set by the receiver for the next wave. A
timeout mechanism at the receiver ensures that the N-S ACK is still sent when
unduly delayed or lost data segments make for only an incomplete wave reaching
the receiver. The current implementation of WWP calls for the next wave level to
be set to 0 in this case.
The sender does not start transmitting data segments until it has a sufficient

number to make up a complete wave. When it receives a N-S ACK setting the wave
level, and if it does not have sufficient old (needing retransmission) and new data up
to the specified number of segments in the wave, it will transmit the segments it has
at the highest wave level for which it has enough segments. Timeout mechanisms
at the sender side take care of instances where the N-S ACK is excessively delayed,
and possibly lost, as described in 3.4 below. In the event the receiver sets the next
wave level at 0, the sender will immediately probe the receiver. The receiver uses
the RTTs (Round Trip Times) measured during the probe cycle to set the new
wave level in a N-S ACK segment it sends to the sender at the end of the cycle.
The probing mechanism is dealt with in the next two subsections.

3.3. Probe cycles

A probe cycle consists of a structured exchange of very short control segments
between sender and receiver, initiated by the sender so as to permit the receiver
to make multiple, consecutive RTT measurements from the network. The sender
would initiate the cycle in response to the receiver’s notification that transmissions
should be suspended for the present. The mechanism also provides the capability
for sender and receiver to efficiently “checkpoint” with each other in the event of
deviation from expected patterns of behavior (e.g. no feedback from the receiver in
response to the last wave sent, and so on).
Probe cycles provide an “energy-saving” mechanism whereby instances in which

good prevailing network conditions appear to be deteriorating can be investigated.
They enable continuous, efficient, end-to-end monitoring of the network in order
to exploit windows of opportunity of improved conditions during which transmis-
sion of data at an appropriate wave level can be successfully resumed. They are
“energy-saving” in contrast to the energy that would otherwise be expended on the
transmission of data segments that do not have a good chance of getting through
during periods of degraded network conditions. Operating at even aggressive wave
levels, and pausing to check with probes in the event of unduly delayed, and pos-
sibly lost segments, the receiver can decide whether to have data transmissions
continue at an appropriately aggressive level, adjust the wave level downwards, or
even temporarily back off data transmission altogether.

122 tsaoussidis et al.

3.4. WWP implementation of probe cycles

A probe cycle in the current version of WWP aims at permitting the receiver to
measure two successive RTTs from the network. It makes use of three short prob-
ing (control) segments (PROBE1, PROBE2 and PROBE3) and acknowledgments
corresponding to the first two of these (PR1 ACK and PR2 ACK). All five seg-
ments carry no payload, consisting only of the 6-byte segment headers. A N-S ACK
is used as the acknowledgment to the PROBE3 segment, and signifies the successful
termination of the probe cycle.
A probe cycle is initiated under one of two conditions. Firstly, if the N-S ACK

segment for the data wave just transmitted sets the next wave level at 0, the sender
initiates a probe cycle by transmitting a PROBE1 segment. Secondly and alterna-
tively, if the N-S ACK segment for the data wave goes absent (see Figure 1). When
the sender finishes transmission of the data wave, it sets a “SEND T” timeout which
is canceled upon receipt of the wave’s N-S ACK. If the SEND T timer expires, the
sender initiates the probe cycle by transmitting a PROBE1 segment. Either way,
the receiver responds to the PROBE1 with a PR1 ACK, upon receipt of which the
sender transmits a PROBE2. The receiver acknowledges this second probe with a
PR2 ACK and enters a state where it waits for a PROBE3. It makes an RTT mea-
surement based on the time delay between sending the PR1 ACK and receiving
the PROBE2. Upon receipt of PROBE3 it makes the second RTT measurement
based on the time delay between the PR2 ACK and the PROBE3. The receiver
then determines the level for the next wave and informs the sender by means of
a N-S ACK, whose payload also identifies all data segments up to this point of
time that need retransmitting. In setting the next wave level, the receiver takes into

PR1_rcvd
PR1_sent

ESTAB
WAVE_RCV_ON

WAIT_N-
S ACK

PR2_sent
PR2_rcvd

PROBE_T/
PROBE3 Active open/

DATA

PROBE3/
N-S_ACK

PROBE1/
PR1_ACK

PROBE2/
PR2 ACK

PROBE_T/
PROBE2

PROBE3/
N-S_ACK

PROBE_T/
PROBE1

PR1_ACK/
PROBE2

PR2_ACK/
PROB 3

SEND_T/
PROBE1

N-S_ACK/

Figure 1. Probing: state transition diagram.

the wave & probe communication mechanisms 123

account the network conditions that had been detected at the time the current wave
level was determined, as well as the values of the two RTT measurements just made
and the delay variation (jitter) between them. Other applications with bursty flows
that are currently sharing the same links of the network that our application is being
routed along will induce measurable jitter between the two RTTs. Contrariwise, an
error free environment, or links that are being shared with normalized/smoothed-
out data flows, will induce no jitter. The receiver can take all this into account in
setting the level for the next wave. The full set of decision-making rules has not yet
been completely standardized, but a set of rules has been developed, implemented
and calibrated in the WWP versions used in our tests.
In the event that the PROBE1 or its acknowledgment is lost, the sender,

using a PROBE T timeout, retransmits the PROBE1. The receiver reinitializes
its measurement timer upon the receipt of the retransmitted PROBE1 in order
to take the correct RTT measurement. Distinct sequence numbers are used to
distinguish between different instances of multiply-retransmitted PROBE1 seg-
ments. A PR1 ACK carries the same sequence number as the corresponding
PROBE1 instance that it is acknowledging. This sequence number is echoed back
in the corresponding PROBE2. A similar process takes place with respect to:
(i) using PROBE T timeouts on the sender side for retransmissions of PROBE2
and PROBE3 segments in the event that either or both, or their corresponding
PR2 ACKs and N-S ACKs, are lost; and (ii) use of distinct sequence numbers for
retransmissions, which are echoed back and forth in the various exchanges between
sender and receiver so that associated segments can be correctly identified and
paired off, and RTTs correctly measured. The receiver moves to the ESTAB state
after sending the N-S ACK that should terminate the probe cycle. In this state, and
should the N-S ACK be lost, the receiver would receive—instead of data segments
from the next wave, or a PROBE1 initiating the next probe cycle if the receiver had
specified wave level 0 in the N-S ACK—it would receive a retransmitted PROBE3.
The N-S ACK was lost (or excessively delayed), and the sender, which is in state
WAIT N-S ACK, timed out on the PROBE T timer and resent the PROBE3. The
receiver would then retransmit the N-S ACK, echoing back the sequence number
of the retransmitted PROBE3.
Although probing is a fairly complicated mechanism and adds additional RTTs to

the protocol’s progress, it proves to be a more useful device than would be sending
data that is likely to be dropped, on the one hand; or reducing the window size
(i.e., reducing the wave level) and degrading the connection throughput, possibly
for no good reason, on the other. The first option would negatively impact energy
expenditure. The second would needlessly degrade the effective throughput and
also, by unnecessarily prolonging the connection time, impact energy consumption.

4. Testing environment and methodology

We ran tests simulating a fairly low-bandwidth environment using the x-kernel
protocol framework [14] and the recommendations of [8]. The tests were carried
out in a single session, with both client and server running on a single network

124 tsaoussidis et al.

segment, so as to avoid unpredictable conditions with distorting effects on TCP’s
and WWP’s performance. TCP Reno was used in the experiments.
Error conditions were simulated by dropping and delaying segments using

modified x-kernel protocols. A “virtual protocol,” VDELDROP, was configured
between the transport protocols (TCP and WWP) and IP. VDELDROP’s core
mechanism consists of a two state (On/Off) continuous time Markov chain. One
state was always configured with a zero error rate. The protocol PHASE DROP
(P D) drops segments at a constant rate specified for the duration of a test, and
causes different delays for each segment. PHASE DROP also has the capability of
alternating On/Off phases during which its drop actions are in effect and are sus-
pended, respectively. Error conditions of varying intensity, persistence and duration
could thus be simulated, depending on the choice of the drop rate and phase dura-
tion. Thus, during a connection period, WWP and TCP would experience phases
that are error free and others with simulated error effects. This modification of
the original VDROP protocol of the x-kernel enabled us to test their behavior
in response to sudden changes in the simulated environment, and their ability to
rapidly re-adapt to varying error conditions. Such conditions are typical of mobile
networks where the user is “on the move”: communication with the access points
will have variable characteristics during the connection time. The high-level testing
(“application”) protocol configured above that sends messages of 1024 bytes to the
underlying transport layer.
Note that the WWP implementation makes no comprehensive attempt to

calibrate the various protocol parameters (data segment size, number of segments
per wave at each wave level, baseline throughput BT, etc.) for optimal performance
with respect to the overall characteristics of the protocol’s operational environ-
ment. The data segment payload was 1 KByte; W �i� = 12 × i, i = 0� 1� 2� 3; BT
was set at 40 KByte/second (which is about 32% of the best effective throughput
achieved under error-free conditions). All this probably causes WWP to under-
state its potential somewhat, though some effort was put into calibrating the sender
timeout values SEND T and PROBE T, and the decision-making process by which
the next wave level was determined at the end of a probe cycle, in order to enhance
performance.

4.1. Test results

Tests are undertaken using 2- and 5-MByte data sets for transmission. The purpose
of the tests was to evaluate the behavior of the two protocols in response to changes
in the simulated network environment, such as congestion and transmission errors at
different rates and of different duration. We took measurements of the total connec-
tion time and the total number of bytes transmitted (i.e., including protocol control
overhead transmissions, data segment retransmissions, etc.). Both of these factors
significantly affect energy expenditure as well as throughput. Error conditions have
various distinct characteristics—transient random errors, short burst errors, per-
sistent and sustained errors, excessive congestion—but one and the same result:
segments are lost. A challenge for both protocols was whether, in the presence of

the wave & probe communication mechanisms 125

Table 1. 10-second On/Off error phases

Time

P D Rate Overhead Tr. En. Effective
Test # Prtcl (%) Time Ran Total Bytes (sec) Wastage Throughput

1.1 TCP 0 69 5319120 — 76240B 75983
1.2 WWP 0 40.5 5268495 — 25615B 129453
2.1 TCP 5 117.4 5395782 48.4 152902B 44685
2.2 WWP 5 71 5290519 30.5 47639 73843
3.1 TCP 10 132.9 5409384 63.9 166504 39449
3.2 WWP 10 81.9 5295859 41.4 52979 64015
4.1 TCP 20 136.63 5410822 67.63 167942 38372
4.2 WWP 20 84.08 5319556 43.58 76676 62355
5.1 TCP 33 258.89 5392682 189.89 149802 20251
5.2 WWP 33 85.9 5324601 45.4 81721 61034
6.1 TCP 50 259.38 5388348 190.38 145468 20213
6.2 WWP 50 86.7 5275294 46.2 32414 60471

errors, they respond in a manner appropriate to, and compatible with, the nature of
the error.
Below we present five tables of results from three distinct sets of tests. The first

set reports on the impact of the protocols’ error-control mechanisms on energy and
throughput (Tables 1 and 2). Time periods for error-free and error-prone phases
were sufficiently large so as to permit both protocols to stabilize their behavior
when conditions change. Measurements of energy and throughput efficiency are
summarized in Table 3.
Results from the second test set, presented in Table 4, are based on shorter

On/Off periods in order to assess the ability of the error/control mechanisms to
rapidly re-adjust to network changes and exploit windows of opportunities for
error-free transmissions.
The last test set explores the energy/throughput tradeoff (Table 5). Two versions

of WWP are used: a conservative version (which is the one used in the tests of
Tables 1–4), and a more aggressive one. The aim here is to investigate conditions
under which: an aggressive transmission strategy yields only minor throughput

Table 2. 4-second On/Off error phases

P D Rate P D Phase Total Time Tr. En. Effective
Test# Prtcl (%) (sec) Time Ran Bytes Overhead Wastage Throughput

1.1 TCP 0 0 69 5319120 — 76240B 75983
1.2 WWP 0 0 40.5 5268495 — 25615B 129453
2.1 TCP 10 4 135.67 5409384 66.67 166504 38644
2.2 WWP 10 4 81.3 5306219 40.8 63339 64488
3.1 TCP 33 4 368.95 5502300 299.05 259420 14210
3.2 WWP 33 4 87.56 5344200 47.06 101320 59877
4.1 TCP 50 4 385.79 5514338 316.79 271458 13589
4.2 WWP 50 4 93.9 5378366 53.4 135486 55834

126 tsaoussidis et al.

Ta
bl

e
3.

C
om

pa
ra
tiv
e
en
er
gy

&
th
ro
ug
hp

ut
re
su
lts

fo
r
T
C
P
an
d
W
W
P

P
D

R
at
e

T
im

e
R
an

E
ne
rg
y

T
im

e
Sa
vi
ng
s

E
ne
rg
y
E
xp
en
d.

R
at
io

T
hr
ou

gh
pu

t
R
at
io

T
im

e
R
at
io

T
#

Pr
tc
l

(%
)

(s
ec
)

Sa
vi
ng
s

(s
ec
)

(T
C
P/
W
W
P)

(T
C
P/
W
W
P)

(%
)

(T
C
P/
W
W
P)

1.
1

T
C
P

0
69

50
K
B

28
.5

2.
97
/1

58
.6

1.
70
/1

1.
2

W
W
P

0
40
.5

2.
1

T
C
P

10
13
2–
13
5

10
3–
11
3
K
B

19
.6
–2
2.
5

2.
62
–3
.1
4/
1

59
–6
0

1.
62
–1
.6
4/
1

2.
2

W
W
P

10
81
.3
–8
1.
9

3.
1

T
C
P

33
25
8–
36
8

68
–1
58

K
B

17
3–
28
1

1.
83
–2
.5
6/
1

23
–3
2

3.
0–
4.
2/
1

3.
2

W
W
P

33
85
.9
–8
7.
6

4.
1

T
C
P

50
25
9–
38
5

11
3–
13
5
K
B

17
2–
29
1

2.
0–
4.
48
/1

24
–3
3

2.
98
–4
.1
/1

4.
2

W
W
P

50
86
.7
–9
3.
7

the wave & probe communication mechanisms 127

Table 4. Protocol behavior under rapid network changes

Rate On/Off
(%) (sec) TCP time WWP time TCP Bytes WWP Bytes Time Ratio

WWP/TCP=
0 0 25.6 15.6 2133636 2107402 0.61
10 1 63.2 28.58 2192524 2137438 0.45
33 1 132.89 31.7 2245877 2202410 0.23
50 1 223.26 37.42 2330992 2304361 0.16
100 1 985.8 39.6 2305088 2296194 0.04
100 2 93.1 32.3 2189628 2158208 0.34
50 2 109.4 31.8 2192574 2168433 0.29
33 2 85.07 32.7 2189648 2163338 0.38
33 5 81.9 32.9 2172392 2124361 0.40

improvements and so wastes energy in transmission attempts; and, a conserva-
tive strategy yields only minor energy savings thereby unnecessarily degrading
throughput with no compensatory benefit.

4.1.1. The impact of error control on energy and throughput. In Table 1 and Figure 2
below we present results for the 5-MByte data set with On/Off phase duration of 10
seconds. In order to represent the energy expenditure overhead required to com-
plete reliable transmission under different conditions, we use the Byte Overhead
as a metric. This is the total extra number of bytes the protocol transmits, over and
above the 5 MBytes delivered to the application at the receiver, from connection
initiation through to connection termination. The Byte Overhead is thus given by
the formula: Byte Overhead = Total − Base, where,

• Base is the number of bytes delivered to the high-level protocol at the receiver,
and is given in the column Orig. Data of the table. It is a fixed 5 MBytes.

• Total is the total of all bytes transmitted by the transport layers, and is given in
the column Total Bytes. This includes protocol control overhead, data segment
retransmission, as well as the delivered data.

Results are reported in the column Tr. En. Wastage (Transmission Energy Wastage).
The time overhead required to complete reliable transmission is given in column

Time Overhead using the formula: Time Overhead = Connection Time − Base,
where,

• Base is the number of seconds required to deliver the 5 MBytes to the high level
protocol at the receiver under error-free conditions, from connection initiation
through to connection termination (see column Time Ran for the tests 1.1 and
1.2).

• Connection Time is the corresponding amount of time required for completion
of data delivery under error-prone conditions, and is given in column Time Ran.

128 tsaoussidis et al.

Ta
bl

e
5.

A
gg
re
ss
iv
e
an
d
co
ns
er
va
tiv
e
ve
rs
io
ns

of
W
W
P

A
gg
re
ss
iv
e

C
on

se
rv
at
iv
e

R
at
e

Ph
as
e

D
at
a

T
im

e
T
hr
ou

gh
pu

t
D
at
a

T
im

e
T
hr
ou

gh
pu

t

(%
)

(s
ec
)

0
0

52
68
49
5

40
.5

12
94
53

52
68
49
5

40
.5

12
94
53

5
2

50
87
6

+1
%

68
.9

+5
6.
8%

76
46
5

−4
1%

46
99
5

0.
8%

75
+8

5%
70
24
6

−4
5.
7%

10
2

86
94
1

+1
.6
%

72
.5

+7
9%

72
66
8

−4
3.
9%

65
66
2

+1
.2
%

79
+9

5%
66
68
9

−4
8.
5%

20
2

17
54
35

+3
.3
%

73
+8

0%
72
17
1

−4
4.
25
%

85
33
3

+1
.6
%

80
+9

7%
65
85
6

−4
9.
1%

33
2

27
22
76

+5
.1
%

80
.7

+9
9%

65
28
4

−4
9.
57
%

11
41
95

+2
.1
%

81
.3

+1
00
%

64
80
3

−5
0%

50
2

41
55
87

+7
.9
%

95
.3

+1
35
%

55
28
3

−5
7.
3%

15
97
31

+3
%

86
.2

+1
12
%

61
11
9

−5
2.
8%

10
0

2
20
75
44

+3
.9
%

80
.5

+9
8.
7%

65
44
7

−4
9.
4%

24
52
88

+5
%

94
.2

+1
32
%

55
92
8

−5
6.
8%

the wave & probe communication mechanisms 129

Figure 2. Connection time and overhead with 10-second On/Off error phases.

The effective throughput of the protocols is given in column Effective Throughput
using the formula: Effective Throughput = Original Data/Connection Time, where,

• Original Data is the 5-MBytes data set (column Orig. Data).
• Connection Time is the amount of time required for completion of data delivery,
from connection initiation to connection termination (column Time Ran).

On and Off phases are of equal duration, given in the column P D Phase. The
P D Rate reported is the dropping rate for segments during the On phases, not

130 tsaoussidis et al.

the averaged overall drop rate across On/Off phases. Entries of 0 in both the P D
Phase and P D Rate columns signify error-free conditions.
As demonstrated by the results for test pairs 2, 3, 4, 5, and 6, the behavior of

WWP is very constant with respect to time (and hence throughput) and energy
expenditure. The throughput achieved is far better than TCP’s and the energy
expenditure is far less. WWP adapts quickly to error phases. It does not auto-
matically decrease its sender window size (i.e., wave level) in response to a drop
as does TCP. Instead, immediately upon experiencing a drop, it pauses in its data
transmission and probes. It then checks the measured RTTs from the probe cycle
to assess whether conditions allow continued transmission and, if so, at what level.
It can adjust back immediately to a high wave level where appropriate, unlike TCP
which applies graduated multiplicative/additive increases to its window size.
This mechanism of WWP’s has two significant results: (i) data transmission is not

wasted during sustained periods of degraded network capacity, and thus retrans-
missions are reduced to a minimum; and (ii) throughput is maximized since we
can adjust to high wave levels immediately under appropriate conditions, thereby
not wasting opportunities for successful data transmission by attempting less than
the network would easily be able to accommodate. This is clearly demonstrated
by the results for test pairs 5 and 6. There, TCP reduces its window size signifi-
cantly since the error rate is high. It then takes considerable amounts of time to
readjust the size back up to an appropriate level, thereby “missing” the “good”
phase. This results in unnecessarily “trading off” prolongation of the connection
time in order to avoid retransmissions. The protocol is clearly inefficient under such
conditions.
These observations gain further strength from Table 2 and Figure 3 below. There,

we present results for tests that were run under the same experiment environment
as for Table 1. Only the On/Off phase duration of PHASE DROP differs: 4 seconds
instead of 10. Consequently, TCP’s window size is further reduced and, not only is
the connection time increased (columns Time Ran and Time Overhead), but so
are the total bytes transmitted (columns Total Bytes and Tr. En. Wastage), and
hence the energy expended. This can be easily explained. There are now more
phases during which TCP “collapses” in response to errors, and its attempts to
readjust its window size causes the following dynamic to occur. Segment drops that
take place during the early part of the error-prone phase occur under conditions
where the window size has been growing in response to the preceding error-free
phase, and these phase transitions are now more frequent. Furthermore, connection
time is increased since the average window size during the connection is now much
smaller than before. WWP, in contrast, exhibits exemplary behavior: it stops and
restarts data transmissions immediately upon entering and leaving the error phases,
respectively; it is constantly readjusting its wave levels, commensurate with the error
environment it is detecting. Test pair 4 clearly demonstrates the vast difference
between the two protocols’ effectiveness under heavy error conditions.
Table 3 below summarizes the effectiveness of the protocols with respect to energy
savings and throughput, as well as their relative behavior under varying conditions,
and is based on the results presented in Tables 1 and 2. Column Energy Saving
gives the number of additional bytes transmitted by TCP to complete the 5-MByte

the wave & probe communication mechanisms 131

Figure 3. Connection time and overhead with 4-second On/Off error phases.

data delivery, over and above the total number of bytes transmitted by WWP under
the same test conditions. Similarly, Time Saving gives the additional time taken by
TCP compared to WWP. Energy Expend. Ratio is a measure of the relative energy
expenditures of the two protocols, and is calculated as

TCP (Total Bytes Transmitted − 5 MBytes)/WWP (Total Bytes
Transmitted − 5 MBytes).

132 tsaoussidis et al.

Throughput Ratio gives the relative throughput rates:

TCP Effective Throughput/WWP Effective Throughput.

Finally, Time Ratio shows the relative connection times for the two protocols
(TCP/WWP).
When error rates are low, TCP behaves well and its major weakness—inability

to adequately readjust to rapidly changing conditions—does not catastrophically
degrade its performance. WWP displays consistently good behavior, even when vari-
ability in the error environment is quite significant. Under such conditions of high
variability, TCP wastes enormous amounts of energy and unexploited throughput
capacity, and does not achieve good performance. Its throughput in all error-prone
cases is well below what it is capable of achieving under error-free conditions, let
alone the higher throughput displayed by WWP.
As demonstrated by test pairs 3 and 4, TCP is unable to take advantage of

network conditions, expending up to fourfold more time than WWP. It is interest-
ing to note (see 3rd test pair) that it transmits up to 158 KBytes more than does
WWP under the same conditions, in order to deliver its 5 MByte data set. So it is
not even trading off lesser transmission effort at the expense of longer connection
times in an effective manner. Indeed, it is especially the longer connection times of
TCP that seriously aggravate the energy consumption characteristics of the protocol,
rather than wasted transmission effort as such. Throughput can reach as low as only
23% of that achieved by WWP, although under error-free conditions it can achieve
up to 58.6% of WWP’s corresponding throughput. Similarly, under error-free
conditions, their relative time ratio was 1.7/1; this ultimately grows to about 4/1 as
error conditions deteriorate.
Results presented in the table for the relative energy expenditure deteriorate to a

value of 4.48/1, though we would argue that it really should reach even worse values
were the total connection times to be taken fully into account. For example, if we
were to estimate energy consumption per unit of idle time (i.e., when no transmis-
sion is taking place) at 10% of the energy consumed during a unit of transmission
time (though this is in fact, device dependent), the energy consumed by WWP in
order to deliver 5 MBytes of data could easily be calculated to be up to 30%–50%
less than that consumed by TCP.

4.1.2. Behavior under rapidly-changing conditions. The following experiments use
shorter error-duration periods under similar conditions of error rates. The data size
is 2 Mbytes. The more persistent the error, the better the relative performance
for TCP, comparing it in its own right. WWP, however, clearly achieves higher
throughput and conserves more energy than TCP. Furthermore, while both pro-
tocols’ throughputs and energy-expenditures degrade as increasingly problematic
network conditions are simulated, WWP’s performance relative to TCP’s improves,
using their performance under error-free conditions as the reference point (com-
pare columns TCP Bytes and WWP Bytes; and, especially, the entries in column
Time Ratio). It is notable that WWP performance remains relatively stable under
varying error-phase duration (1 sec, 2 sce, 5 sec) while TCP’s inability to adjust its

the wave & probe communication mechanisms 133

transmission policy to current network conditions is more marked as phase changes
become more frequent/rapid.
An interesting observation can be made about the 50% and 100% error-rate tests.

Note that TCP overall performance (energy and time) improves when the error rate
increases from 50% to 100% . Although not reported here, similar behavior occurs
with On/Off periods of 3, 4, and 5 seconds. We conjecture the following expla-
nation. At a 50% error rate, attempting transmissions that are likely to be lost
causes upward adjustment of the sender’s timeout as well as reduction in the size
of the congestion window. For each acknowledgment that comes through, depend-
ing on the TCP version used, additional adjustments will be applied. Waiting for
an extended timeout to expire results in wasting possibly error-free periods without
attempting any transmission. In contrast to this scenario, with a 100% error rate
the sender backs off virtually completely. No acknowledgment comes through and
no further timeout adjustments are triggered off, resulting in a more rapid response
by the sender to the changeover to an error-free phase, and hence in better perfor-
mance. Note that this seemingly anomalous behavior is very environment-specific.
In another testing environment, 2-, 3-, 4-, and 5-second periods might trigger dif-
ferent patterns. However, we would expect to see this anomalous behavior across
some range of error-phase duration. A similar effect is observed and explained in
the next subsection with respect to the aggressive version of WWP.

4.2. The energy/throughput tradeoff

Table 5 summarizes results from experiments undertaken to explore the nature
of the energy/throughput tradeoff. WWP is configured to behave aggressively in
one group of tests, backing off and probing when errors occur, but immediately
resuming maximum transmission effort at the highest wave level when a clear period
is detected. It behaves more conservatively in the second group of tests, during
which its transmission varies between three different wave levels depending on the
RTT measurements and the detected frequency/duration of the errors. Note that
the first row of the table gives the base (error-free conditions) measurement for the
two versions. The remaining rows report the overhead relative to this measurement.
As anticipated, the more aggressive the transmission effort, the more the effective

throughput so long as the error rate is low (e.g. 5%). The gain in throughput is
higher than in the conservative approach, while the extra energy expenditure is
minor. As conditions deteriorate and reach error levels of 20%, the energy cost
becomes significant but the gain in throughput is still important. At this stage, it
is an application’s choice whether energy or throughput would be the significant
factor. This dilemma, however, resolves itself when error rates reach levels as high
as 33%. At these rates aggressive behavior not only does not save energy, but instead
degrades the protocol’s overall performance.
The last row of the table represents a heavy burst error condition where the

error rate for the On phases is 100%. Here, the aggressive version, using shorter
time-outs and adjusting faster to maximum transmission effort, results in enhanced
throughput. Note that when the error rate increases to 100%, performance of the

134 tsaoussidis et al.

aggressive version of the protocol actually improves. In the 50% case the protocol
continues to attempt transmissions during the On periods at some relatively aggres-
sive level. The error rate is sufficiently dense, however, that the gain achieved by
successfully-attempted segments is more than counterbalanced by the failures that
require retransmission. Under the 100% case, on the other hand, the protocol
effectively backs off completely during the On case and does not attempt any
transmissions at all.

5. Conclusion

We have presented the “wave” and “probing” mechanisms, which are suitable for
reliable transport protocols that aspire to high throughput and low energy expendi-
ture in network environments with significantly variable error characteristics. In con-
trast to TCP congestion control, wave and probing suffices as a universal, end-to-end
error-control mechanism: it effectively detects the network condition by measuring
the receiving throughput instead of observing packet loss at the sender side. It has
the ability to distinguish different types of errors and apply an appropriate strategy
for error recovery. The protocols that use waves and probing do not achieve better
performance because of their aggressive behavior; they can be aggressive or con-
servative based on the nature of the detected error. It is exactly this capability that
permits such protocols to utilize better the available bandwidth within the confines
of fairness to other flows that potentially share the bandwidth of the communication
channel.
WWP itself owns a number of advantages over standard TCP for mobile

computing. It expends less energy since retransmission overhead and duplica-
tions can be avoided. Beyond its energy saving feature, WWP also maintains high
throughput. Finally, since the receiver, instead of the sender, decides about the
size of the transmission window, problems that arise from asymmetric paths can
be efficiently resolved. WWP, however, is not compatible with TCP semantics. It
might be desirable in several cases to incorporate the mechanisms presented here
into TCP and permit a wide range of existing applications to take advantage of
potential improvements of energy and throughput performance. Our current work
on TCP-Probing and TCP-Wave is towards that direction.

References

1. M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581, April 1999.
2. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A comparison of mechanisms for

improving TCP performance over wireless links. ACM/IEEE Transactions on Networking, December
1997.

3. A. Chocalingam, M. Zorzi, and R. R. Rao. Performance of TCP on wireless fading links with
memory. In Proceedings of IEEE ICC’98, June 1998.

4. S. Floyd and T. Henderson. The new Reno modification to TCP’s fast recovery algorithm. RFC
2582, April 1999.

5. V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM ’88, August 1988.

the wave & probe communication mechanisms 135

6. A. Kumar. Comparative performance analysis of versions of TCP in a local network with a lossy
link. ACM/IEEE Transactions on Networking, August 1998.

7. T. Lakshman and U. Madhow. The performance of TCP/IP for networks with high bandwidth-delay
products and random loss. IEEE/ACM Transactions on Networking, pp. 336–350, June 1997.

8. V. Paxson, et al. Known TCP implementation problems. RFC 2525, March 1999.
9. J. Postel. Transmission control protocol. RFC 793, September 1981.
10. K. Ramakrishnan and S. Floyd. “A proposal to add explicit congestion notification (ECN) to IP”,

RFC 2481, January 1999.
11. V. Tsaoussidis, H. Badr, and R. Verma. Wave and wait: an energy-saving transport protocol for

mobile IP-devices. In Proceedings of IEEE ICNP ’99, Toronto, Ont., Canada, October 1999.
12. V. Tsaoussidis, A. Lahanas, and H. Badr. The Wave and wait protocol: high throughput and low

energy expenditure for mobile-IP devices. In Proceeidngs of IEEE ICON, 2000.
13. V. Tsaoussidis, H. Badr, G. Xin, and K. Pentikousis. Energy/throughput tradeoffs of TCP error

control strategies. In Proceedings of the 5th IEEE Symposium on Computers and Communications,
ISCC, 2000.

14. The X-kernel. www.cs.arizona.edu/xkernel.
15. M. Zorzi and R. Rao. Energy efficiency of TCP. In Proceedings of MoMUC ’99, Calif., San Diego,

1999.

