Internetworking

Outline
- Best Effort Service Model
- Global Addressing Scheme
IP Internet

- Connecting Problem 1: Heterogeneity of Networks
 - Solution: Layered Protocol Stack (IP over ……)

- Problem 2: Scalability in Routing and Addressing
 - Solution: Address Hierarchy

Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets can be lost, delayed, duplicated, delivered out of order.
- Datagram format: IP header

<table>
<thead>
<tr>
<th>Version</th>
<th>HLen</th>
<th>TOS</th>
<th>Length</th>
<th>Ident</th>
<th>Flags</th>
<th>Offset</th>
<th>TTL</th>
<th>Protocol</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Options (variable) | Pad (variable) | Data
IP Header

- **Version** (always set to the value 4 for IP v4)
- **IP Header Length** (number of 32-bit words forming the header, usually five)
- **Size of Datagram** (in bytes, header + data)
- **Flags** 3 bits: R (reserved bit set to 0) DF (Don’t fragment) MF (More fragments)
- **Time To Live** (Number of hops /links which the packet may be routed over, decremented by most routers - used to prevent accidental routing loops)
- **Protocol** (the type of transport packet being carried (e.g. 1 = ICMP; 6 = TCP; 17= UDP))
- **Header Checksum** (A 1’s complement checksum of IP header, updated whenever the packet header is modified by a node. Packets with an invalid checksum are discarded by all nodes in an IP network)
- **Source Address / Destination Address**

Fragmentation and Reassembly

- Each network has some MTU (max trans. Unit)
- Design decisions
 - fragment (re-fragment) when necessary (MTU < Datagram)
 - fragments are self-contained datagrams
 - delay reassembly until destination host
 - do not recover from lost fragments
 - try to avoid fragmentation at senders (packet size < local MTU)
Example

• **FDDI MTU 523 bytes** = 20 + 512
• **Fragmentation Offset** offset from the start of the original sent packet, in units of 8 bytes (512 / 8 = 64)
• **Identification** (16-bit number which together with the source address uniquely identifies this packet)
• **Flag MF** (more fragments) = 1;

![Diagram](image)

Global Addresses

• **Properties**
 – globally unique
 – hierarchical: network + host
 – Class A, B, C

• **Dot Notation**
 – 10.3.2.4
 – 128.96.33.81
 – 192.12.69.77
Datagram Forwarding Strategy

- Every datagram contains destination’s address
- if connected to destination network, then forward to the host in LAN
 - If network number of destination IP == my network number
- if not directly connected, then forward to some router
 - each host has a default router configured
- Each router maintains a forwarding table
 - forwarding table maps network number (rather than host address) into next hop or interface number (if directly connected)
 - Otherwise send to its (the router’s) default router

Traffic: H1 → H3, H1 → H8
R1: default router is R2

R2 Routing Table:

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
<td>interface 1</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
<td>interface 0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>interface 1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>interface 0</td>
</tr>
</tbody>
</table>

Network 1 (Ethernet)
Network 2 (Ethernet)
Network 3 (FDDI)
Network 4 (point-to-point)
Address Translation in LAN

- Map IP addresses into physical addresses of the destination host (if connected directly) or the next hop router
- ARP
 - Each host caches its table of IP to physical address bindings
 - table entries are discarded if not refreshed
 - timeout in about 10 minutes
 - broadcast request if IP address not in table
 - target machine send its physical address to the sender
 - target machine also updates add entry of the source in its table
 - It is likely that the target will send IP packets to the source later on.
 - Other hosts (who receives the broadcasted request) update table if already have an entry

ARP Details

- Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request=1 or response=2

<table>
<thead>
<tr>
<th></th>
<th>Hardware type = 1</th>
<th>ProtocolType = 0x0800 (IP)</th>
<th>HLen=48(Eth)</th>
<th>PLen=32(IP)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SourceHardwareAddr (bytes 0–3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceHardwareAddr (bytes 4–5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceProtocolAddr (bytes 2–3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TargetHardwareAddr (bytes 6–9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TargetProtocolAddr (bytes 10–13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Internet Control Message Protocol (ICMP)

- Error/control messages sent by routers to the source IP.
- Echo (ping)
- TTL exceeded (traceroute)
- Redirect
 - E.g. Two routers are attached to the network.
 - Can be returned by the default router of the host
- Destination Unreachable / Fragmentation Needed and DF Set
 - On some modern computers, Don't Fragment (DF) flag is set in the IP header.
 - The router with smaller MTU discards the IP datagram and sends an ICMP message (type 3 / subtype 4) with its MTU to the sending host.
 - PMTU (Path MTU) discovery (RFC 1191)
 - Non-PMTU-compliant routers or firewalls may cause problem.