
1

1

Reliable Byte-Stream (TCP)

Outline
Connection Establishment/Termination
Sliding Window Revisited
Flow Control
Adaptive Timeout

2

End-to-End Protocols
• Underlying best-effort network

– drop messages
– re-orders messages
– delivers duplicate copies of a given message
– limits packet (not message) to some finite size
– delivers messages after an arbitrarily long delay

• Common end-to-end services
– guarantee message delivery
– deliver messages in the same order they are sent
– deliver at most one copy of each message
– support arbitrarily large messages
– support synchronization between sender and receiver
– allow the receiver to flow control the sender
– support multiple application processes on each host

2

3

Simple Demultiplexor (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing
• No flow control or error control

– no need for sender-side buffer)

• Endpoints identified by ports
– servers listens at well-known ports!
– see /etc/services on Unix

• Header format

• Optional checksum
– psuedo header (IP.src, IP.dsest, IP.proto, UDP.len) + UDP header +

data

SrcPort DstPort

ChecksumLength

Data

0 16 31

4

TCP Overview

• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

■ ■ ■

3

5

Data Link Versus End-to-End Transport

• Potentially connects many different hosts
– need explicit connection establishment and termination

• Potentially different RTT
– need adaptive timeout mechanism

• Potentially long delay in network
– need to be prepared for arrival of very old packets

• Potentially different capacity at destination
– need to accommodate different node capacity

• Potentially different network capacity
– need to be prepared for network congestion

6

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

4 10 16 31

4

7

Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– acknowledgment, SequenceNum, AdvertisedWinow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

8

Connection Establishment and
Three-Way Handshake

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum =x

ACK, Acknowledgment =y+1

Acknowledgment =x+1

SYN+ACK, SequenceNum=y,

5

9

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN
event / action

event: receiving a segment,
or an operation invoked by
application

10

State Transition Diagram (cont)

• Data transfer occur in the ESTABLISHED state
• Open a connection

– Server listens and waits for SYN.
– If the client’s ACK to the server is lost, connection is still

established, due to cumulative ACKs

• Terminate a connection
– Both sides can terminate

• Case 1: one side closes first
• Case 2: both sides close at the same time

– TIME_WAIT to CLOSED: wait for 120 seconds
• The other side might retransmit FIN while waiting for ACK
• The next TCP connection might reuse the same port.

6

11

Connection Termination –
One Side Closes First

close

FIN

ACK

ACK

FIN

CLOSED

CLOSED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSE_WAIT

close

LAST_ACK

12

Connection Termination –
Both Sides Close

close
FIN

ACK

ACK

FIN

CLOSED
CLOSED

FIN_WAIT_1

CLOSING

TIME_WAIT

CLOSING

close

TIME_WAIT

FIN_WAIT_1

7

13

Sending Buffer and Receiving Buffer

• The receiver’s buffer has two purposes
– Reorder segments received out of order

– Hold data unread by the application

• The receiver sends AdvertisedWindow in ACK

• The sender cannot send more than
AdvertisedWindow bytes of unacknowledged data at
any given time (Flow Control).

• The receiver selects a suitable AdvertisedWindow
based on the available memory and application
reading speed.

14

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected < =
LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Implementation:
circular buffers

8

15

Flow Control
• MaxSendBuffer and MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer

– AdvertisedWindow = MaxRcvBuffer –
((NextByteExpected – 1) - LastByteRead)

• Sending side
– LastByteWritten - LastByteAcked < = MaxSendBuffer

• block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

– LastByteSent - LastByteAcked < = AdvertisedWindow

– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked) (how much more original data can be sent)

• Always send ACK in response to arriving data segment
• Persist when AdvertisedWindow = 0

– Sender sends 1 byte of data every so often.

16

Adaptive Retransmission
(Original Algorithm)

• Measure SampleRTT for each segment / ACK pair

• Compute weighted average of RTT
– EstRTT = α x EstRTT + β x SampleRTT
– where α + β = 1, 0.8 ≤a ≤0.9, 0.1 ≤ b ≤ 0.2

– Smooth noisy measurements

• Set timeout based on EstRTT
– TimeOut = 2 x EstRTT

– 2: to be conservative

9

17

Karn/Partridge Algorithm

• Do not sample RTT when retransmitting
• Double timeout after each retransmission

– When the retransmitted segment is ACKed, timeout
value is reduced to 2 x EstRTT

Sender Receiver

Original transmission

ACK

Retransmission

Sender Receiver

Original transmission

ACK

Retransmission

(a) (b)

18

Jacobson/ Karels Algorithm
• Takes the variances of sampled RTT into account

– if the var is small, no need to multiply EstRTT by 2.

• Diff = SampleRTT - EstRTT
• EstRTT = EstRTT + (δδδδ x Diff)

= (1 - δ)δ)δ)δ) x EstRTT + δδδδ x SampleRTT
• Dev = Dev + δδδδ(|Diff| - Dev)

= (1 - δ)δ)δ)δ) x Dev + δ δ δ δ |Diff|
– where δ is a factor between 0 and 1

• TimeOut = µ x EstRTT + φx Dev
– where µ = 1 and φ= 4

• Notes
– algorithm only as good as granularity of timer (500ms on Unix,

100ms on Linux)
– accurate timeout mechanism important to congestion control (later)

10

19

Silly Window Syndrome
• MSS (Max Segment Size) is set to (local MTU – TCP/IP

header)
• The TCP sender may sends tiny segment into networks

– if the effective window is less than MSS
– if the application generates data one byte at a time

• Inefficient use of bandwidth : 4000% overhead of TCP/IP
header

• Not aggregates afterwards due to the ACK self-clocking
mechanism.

Sender Receiver

20

Nagle’s Algorithm

• How long does sender delay sending data?
– too short: poor network utilization

– too long: hurts interactive applications

– how long? utilize ACK self-clocking to simulate a
timer

• If there is unACKed data in transit: buffer it until
ACK arrives; else send it

11

21

Message Boundaries

• UDP socket API is message-oriented (datagram
sockets)
– Individual datagrams (sent with separate calls) will be

kept separate when they are received. A revcfrom() call on
a datagram socket will only return the next datagram.

– Applications picks the segment size.
• Could be segmented by IP.

• TCP socket API is byte-oriented (stream sockets)
– Message boundaries addressed by the application layer

protocol.

22

Problem: Keeping the Pipe Full

• 16-bit AdvertisedWindow allows 64KB

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

assuming 100ms RTT

12

23

Problem: Protection Against Wrap
Around

• 32-bit SequenceNum
– 16-bit AdvertisedWindow: 232 >> 2·216

• Another byte with the same sequence number x could be
sent once again, if window size is large enough (e.g 1GB)

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

24

TCP Extensions

• Implemented as header options

• Store timestamp in outgoing segments
– for fine-grained RTT measurements

• Extend sequence space with 32-bit timestamp
(PAWS)
– for packet differentiation

– not for reordering or acknowledging

• Shift (scale) advertised window

