
1

COP 4225 Advanced Unix Programming

I/O Systems

Chi Zhang
czhang@cs.fiu.edu

2

I/O Hardware

The kernel is structured to use device-
driver modules.
Common concepts

Port (for one device)
Bus (shared direct access)
Controller (host adapter) accepts commands
from the processor through buses

The controller has one or more registers for data and
control signals.

3

A Typical PC Bus Structure

4

I/O Hardware

Expansion bus connects relatively slow devices
Devices have addresses, used by

Direct I/O instructions (in, out)
Slower
Space limited

Memory-mapped I/O (mov, add, or, …)
Faster
Prone to software faults

An I/O port typically consists of four registers
status, control, data-in, data-out

5

Device I/O Port Locations on PCs (partial)

6

Polling

Producer-consumer handshake
command-ready bit in the command register
busy bit in the status register

Busy-wait cycle to wait for I/O from device
The processor polls the busy bit until it becomes clear
The processor sets the write bit in the command
register and writes a byte into the data-out register
before setting the command-ready bit

Wastes CPU time

7

Interrupts

CPU Interrupt request line triggered by I/O
device
Interrupt vector to dispatch interrupt to correct
handler

Registered at boot time.
Based on priority (Some unmaskable)

CPU saves a small amount of state, and jumps
to the interrupt handler
Interrupt handler processes interrupts
Interrupt handler then return to the execution
state prior to the interrupt.

8

Interrupts

Interrupt handler
Transfer data from the controller to memory (if not DMA)
Wake up the process waiting for the I/O completion

Interrupt mechanism also used for exceptions
Page Fault in virtural memory paging

Interrupt mechanism also used for Systems
Calls

Trap
Switch to kernel mode

9

Interrupt-Driven I/O Cycle

10

Direct Memory Access

Used to avoid programmed I/O (PIO) for
large data movement

Bypasses CPU to transfer data directly between
I/O device and memory

Requires DMA controller
DMA-request from the device controller to the
DMA controller
DMA-ack from the DMA controller to the device
controller.

11

Six Step Process to Perform DMA
Transfer

12

Application I/O Interface

I/O system calls encapsulate device
behaviors in generic classes

Device-driver layer hides differences among I/O
controllers from kernel

Back-door to transparently pass arbitrary
commands from an application to a device
driver

Unix: ioctl
An integer argument to select one of the
commands

13

A Kernel I/O Structure

I/O system calls encapsulate device behaviors in generic classes

14

Block and Character Devices

Block devices include disk drives
Commands include read, write, seek
Memory-mapped file access possible

Character devices include keyboards,
mice, serial ports

Commands include get, put
Produce data input at unpredictable time.

15

STREAMS
STREAM – a full-duplex communication
channel between a user-level process and
a device

Character devices only
Message passing is used to communicate
between queues (e.g. putmsg vs. write)

Message boundaries and control information
between modules

Modules providing processing functionality
can be pushed into Stream by ioctl().

Modular and incremental development

16

The STREAMS Structure

17

Clocks and Timers

Provide current time, elapsed time, timer

If programmable interval time used for
timings, periodic interrupts

Virtual clocks

ioctl (on UNIX) covers odd aspects of
I/O such as clocks and timers

18

Blocking and Nonblocking I/O
Blocking - process suspended until I/O
completed

Easy to use and understand
Insufficient for some needs
Efficiencies can be improved via multi-threading

Nonblocking - I/O call returns as much as
available

User interface, data copy (buffered I/O)
Asynchronous - process runs while I/O executes

Difficult to use
I/O subsystem signals process when I/O completed

19

Kernel I/O Subsystem

Scheduling
Some I/O request ordering via per-device
queue
Minimize disk arm seeks and improve fairness

Buffering - store data in memory while
transferring between devices

To cope with device speed mismatch
To cope with device transfer size mismatch
To maintain “copy semantics”

Application might change the buffer after system calls

20

Kernel I/O Subsystem

Spooling - hold output for a device
If device can serve only one request at a time
Each application’s output is spooled to a
separate disk file
E.g. a daemon process for printing

Error handling
Most return one bit information about the status
(succes / failure)
an error number or code indicating the error
nature (Unix: errno)

21

Kernel Data Structures

Kernel keeps state info for I/O
components, including open file tables,
network connections, character device
state
Many, many complex data structures to
track buffers, memory allocation, “dirty”
blocks
Some use object-oriented methods and
message passing to implement I/O

22

UNIX I/O Kernel Structure

23

I/O Requests to Hardware
Operations

Consider reading a file from disk for a
process:

Determine device holding file
Longest match prefix in the mount table
<major, minor> device number
Minor passed to the driver selected by major.

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

24

Life Cycle of An I/O Request

25

Performance

I/O a major factor in system performance:
Demands CPU to execute device driver, kernel
I/O code
Context switches due to interrupts

Sometimes Programmed I/O is more efficient, if the
number of busy-waiting cycles is not excessive.

Data copying
Network traffic especially stressful

26

Intercomputer Communications

27

Improving Performance

Reduce number of context switches
Reduce data copying
Reduce interrupts by using large transfers,
smart controllers, polling
Use DMA and offload channels
Balance CPU, memory, bus, and I/O
performance for highest throughput

28

Device-Functionality Progression

