
1

COP 4225 Advanced Unix Programming

Operating System Review

Chi Zhang
czhang@cs.fiu.edu

2

About the Course

Prerequisite: COP 4610
Concepts and Principles
Programming

System Calls
Advanced Topics

Internals, Structures, Details
Unix / Linux

3

What is an Operating System?
A general purpose software that acts
as an intermediary between users of a
computer and the computer hardware.

Encapsulates hardware details.
Controls and coordinates the use of the
hardware among the various application
programs for the various users.

Use the computer hardware in an
efficient manner.

4

Abstract View of O.S.

5

OS Features Needed for
Multiprogramming

CPU scheduling – the system must
choose among several jobs ready
to run.
Memory management – the system
must allocate the memory to
several jobs.
I/O routine supplied by the system.
Allocation of devices (e.g. Disk
usage).

6

Parallel Systems
Multiprocessor systems with more than
one CPU in close communication.
Tightly coupled system – processors share
memory and a clock; communication
usually takes place through the shared
memory.
Advantages of parallel system:

Increased throughput
Economical
Increased reliability

7

Parallel Systems (Cont.)
Symmetric multiprocessing (SMP)

Each processor runs an identical copy of the operating
system.
Many processes can run at once without performance
deterioration.
Most modern operating systems support SMP

8

Computer-System Architecture

9

Computer-System Operation

I/O devices and the CPU can execute
concurrently, competing for memory accesses.

Memory controller synchronizes accesses.

Each device controller has a local buffer.
CPU moves data between main memory and
local buffers of controllers.
I/O is from the device to local buffer of controller.

The buffer size varies

Device controller informs CPU that it has
finished its operation by causing an interrupt.

10

Common Functions of Interrupts
Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector,
which contains the addresses of all the service
routines.
The operating system preserves the state of the
CPU before the interrupt by storing registers and
the program counter.
Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost
interrupt.
A trap is a software-generated interrupt caused
either by an error or a user request.

11

I/O Structure
Device-status table contains entry for each I/O
device indicating its type, address, and state.
Operating system indexes into I/O device table to
determine device status and to modify table entry to
include interrupt.
After I/O starts, control returns to user program only
upon I/O completion (Synchronous I/O).

System call – request to the operating system to allow
user to wait for I/O completion.
Wait instruction idles the CPU (could be used by other
processes) until the next interrupt
Wait loop (contention for memory access and CPU).

Poll the device status if it does not support interrupt
At most one I/O request is outstanding at a time, no
simultaneous I/O processing.

After I/O starts, control returns to user program without
waiting for I/O completion (Asynchronous I/O).

12

Device-Status Table

13

Direct Memory Access Structure

Used for high-speed I/O devices able to
transmit information at close to memory
speeds.
Device controller transfers blocks of data
from buffer storage directly to main
memory without CPU intervention.

Direct I/O: Device ↔ CPU Register ↔ Mem
Only one interrupt is generated per block,
rather than the one interrupt per byte.

14

Storage Hierarchy
Storage systems organized in hierarchy.

Speed / Cost / Volatility

Caching – copying information into faster
storage system

Consistency and Coherency (Multiple CPUs):
guaranteed by the hardware.
main memory can be viewed as a last cache for
secondary storage (e.g. Hard disk).

15

Moving-Head Disk Mechanism
Disk surface is logically divided into tracks, which are subdivided
into sectors.
The disk controller determines the logical interaction between the
device and the computer.

16

Storage Structure

Memory-mapped I/O
Physical memory is only part of the entire address
space.
Each location on the screen is mapped to a memory
location in the address space.

Electronic Disk (Non-Volatile Memory)
DRAM array + battery-backed magnetic hard disk
(small)
If external power is off, the data are copied from RAM
to the disk
When the external power is restored, the data are
copied back to the RAM.

ROM

17

Hardware Protection

Sharing system resources requires
operating system to ensure that an
incorrect program cannot cause other
programs to execute incorrectly.

Dual-Mode Operation
I/O Protection
Memory Protection
CPU Protection (Time-Sharing)

18

Dual-Mode Operation

Provide hardware support for two modes of
operations.

1. User mode – execution done on behalf of a user.
2. Monitor mode (also kernel mode or system mode) –

execution done on behalf of operating system.
• Privileged instructions can be issued only in monitor mode.

Mode bit added to computer hardware to
indicate the current mode: monitor (0) or user
(1).

associated with each memory segment

19

Dual-Mode Operation (Cont.)
OS boots in monitor mode.
OS starts user processes in user mode.
When an interrupt or fault occurs hardware
switches to monitor mode.

trap for system calls
Interrupt/fault

monitor user

set user mode

Privileged instructions can be issued only in monitor mode.

20

I/O Protection

All I/O instructions are privileged
instructions.
Must ensure that a user program could
never gain control of the computer in
monitor mode (loaded by OS).

21

Memory Protection
In order to have memory protection, add
two registers that determine the range of
legal addresses a program may access:

Base register – holds the smallest legal
physical memory address.
Limit register – contains the size of the range

In user mode, memory outside the defined
range is protected.

Attempts trap to error

22

Hardware Protection

When executing in monitor mode, the
operating system has unrestricted access
to both monitor and user’s memory.

The system call implementation can write back
to buffers in user processes.

The load instructions for the base and limit
registers are privileged instructions.

23

CPU Protection

Timer – interrupts computer after specified
period to ensure operating system maintains
control.

Timer is decremented every clock tick.
When timer reaches the value 0, an interrupt
occurs and control transfers to OS

OS performs various housekeeping tasks and
switch context if necessary.
Load-timer is a privileged instruction.

24

Common System Components
Process Management
Main Memory Management
File Management
I/O System Management
Secondary Management
Networking
Protection System
Command-Interpreter System

25

Process Management
A process is a program in execution. A process
needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish its
task.

program counter: the next instruction to execute.

OS is responsible for the following activities in
connection with process management.

Process creation and deletion.
process suspension and resumption.

26

Main-Memory Management
Memory is shared by the CPU and I/O devices.
Main memory is a volatile storage device.
The operating system is responsible for the
following activities in connections with memory
management:

Keep track of which parts of memory are currently
being used and by whom.
Decide which processes to load when memory space
becomes available.
Allocate and deallocate memory space as needed.

27

File Management

The operating system is responsible for
the following activities in file management:

File creation and deletion.
Directory creation and deletion.
Mapping files onto nonvolatile storage.
File backup on stable (nonvolatile) storage
media.

28

Secondary-Storage Management
The operating system is responsible
for the following activities in disk
management:

Free space management
Storage allocation
Disk scheduling

29

I/O System Management

The I/O system consists of:
A buffer-caching system
A general device-driver interface
Drivers for specific hardware devices

30

Command-Interpreter System

The program that reads and interprets
control statements is called variously:

command-line interpreter
shell (in UNIX)

Its function is to get and execute the next
command statement.

process creation and management, I/O
handling, secondary-storage management,
main-memory management, file-system access,
protection, networking

31

Additional Operating System Functions

Additional functions exist for ensuring
efficient system operations.

• Resource allocation – allocating resources to
multiple users or multiple jobs running at the
same time.

• Accounting – keep track of and record which
users use how much and what kinds of
computer resources for account billing or for
accumulating usage statistics.

• Protection – ensuring that all access to system
resources is controlled.

32

System Calls
System calls provide the interface between
a running program and the operating
system.
Three general methods are used to pass
parameters between a running program
and the operating system.

Pass parameters in registers.
Store the parameters in a table in memory, and
the table address is passed as a parameter in a
register (Linux).
Push (store) the parameters onto the stack by
the program, and pop off the stack by operating
system.

33

Passing of Parameters As A Table

34

UNIX Running Multiple Programs

fork()

exec()

wait() / waitpid()

Foreground or Background
execution.

When a process is running in
background, it cannot receive input
directly from the keyboard.

35

Communication Models
Communication may take place
using either message passing (e.g.
socket) or shared memory.

Msg Passing Shared Memory

36

System Programs

System programs provide a convenient
environment for program development and
execution. The can be divided into:

File manipulation
Status information
File modification
Programming language support
Program loading and execution
Communications
Application programs

The view of O.S. seen by users is defined by the
system programs, rather than by system calls.

37

UNIX System Structure
The original UNIX operating system
had limited structuring. The UNIX
OS consists of two separable parts.

Systems programs
The kernel

everything below the system-call interface
and above the physical hardware
Provides the file system, CPU scheduling,
memory management, and other operating-
system functions

38

UNIX System Structure

39

Mechanisms and Policies

Mechanisms determine how to do
something, policies decide what will be
done.
The separation of policy from mechanism
allows maximum flexibility if policy
decisions are to be changed later.

Timer is a mechanism for CPU protection, but
deciding how long the timer is to be set for a
particular user is a policy decision.

40

System Implementation

Traditionally written in assembly language,
operating systems can now be written in
higher-level languages.
Code written in a high-level language:

can be written faster.
is more compact.
is easier to understand and debug.
easier to port (move to some other hardware) if
it is written in a high-level language.

41

System Generation (SYSGEN)

Operating systems are designed to run on any of
a class of machines; the system must be
configured for each specific computer site.
SYSGEN program obtains information
concerning the specific configuration of the
hardware system.
Bootstrap program – code stored in ROM that is
able to locate the kernel, load it into memory,
and start its execution.

