
1

COP 4225 Advanced Unix Programming

Processes and Threads

Chi Zhang
czhang@cs.fiu.edu

2

Process Concept
Process – a program in execution;
process execution must progress in
sequential fashion.
A process includes

program counter
stack
data section
(p.168 Figure 7.3):

3

Process State
As a process executes, it changes state

new: The process is being created.
running: Instructions are being executed.
waiting: The process is waiting for some event to occur.
ready: The process is waiting to be assigned to a process.
terminated: The process has finished execution.

4

Diagram of Process State

5

Process Control Block (PCB)

Pointer to the next
process

6

CPU Switch From Process to
Process

7

Process Scheduling Queues

Job queue – set of all processes in the
system.
Ready queue – set of all processes
residing in main memory, ready and
waiting to execute.
Device queues – set of processes waiting
for a particular I/O device.
Process migration between the various
queues.

8

Representation of Process
Scheduling

9

Schedulers
Long-term scheduler

which processes should be brought into the ready
queue (in memory rather than on disk).
invoked very infrequently (when a process leave the
system)

Short-term scheduler
selects which process should be executed next and
allocates CPU.
Invoked frequently

Midterm scheduler
Swapping improves the process mix.

10

Context Switch

When CPU switches to another process,
the system must save the state of the old
process and load the saved state for the
new process.
Context-switch time is overhead; the
system does no useful work while
switching.
Time dependent on hardware support.

11

Process Creation
Parent process create children processes,
which, in turn create other processes,
forming a tree of processes.
Resource sharing

Parent and children share all resources.
Children share subset of parent’s resources.
Parent and child share no resources.

Execution
Parent and children execute concurrently.
Parent waits until children terminate.

12

Processes Tree on a UNIX
System

13

Process Termination

Process executes last statement and asks the operating
system to decide it (exit).

Output data from child to parent (via wait).
Process’ resources are deallocated by operating system.

Parent may terminate execution of children processes
(abort).

Child has exceeded allocated resources.
Task assigned to child is no longer required.
Parent is exiting.

Operating system does not allow child to continue if its parent
terminates.
Cascading termination.

14

Single and Multithreaded Processes

15

Benefits

Responsiveness
User interaction in parallel with data retrieval

Resource Sharing
Economy

In Solaris 2, creating a process is about 30
times slower than threads
Context switch is about 5 times slower.

Utilization of MP Architectures

16

User Threads

Thread management done by user-level
threads library
A blocking system call will cause the entire
process to block

OS is unaware of threads
The kernel cannot schedule threads on
different CPUs.

17

Many-to-One Model (User Threads)

18

Kernel Threads

Supported by the Kernel
OS manages threads

Slower to create and manage because of
system calls
A blocking system call will not cause the entire
process to block.
The kernel can schedule threads on different
CPUs.

19

Many-to-Many Model (Solaris 2)
Allows many user level threads to be mapped to
many kernel threads.
Allows the operating system to create a
sufficient number of kernel threads.

20

Many-to-Many Model

21

Threading Issues

Semantics of fork() and exec() system calls.
Duplicate all threads in the child process?

Thread cancellation.
Asynchronous Cancellation

One thread immediately terminates the target thread
OS reclaims resources (but not all) allocated to the
threads

Deferred Cancellation
The target thread checks periodically if it should terminate
(if so, terminate gracefully)

22

Threading Issues

Signal handling
Which thread should a signal be delivered

Thread pools
Creating threads upon incoming request is
expensive
Unlimited Threads can exhaust system
resources
Request queue + thread pool

Thread specific data

23

Pthreads

a POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.
API specifies behavior of the thread
library, implementation is up to
development of the library.
Common in UNIX operating systems.

24

Solaris 2 Threads

Light Weight Threads (LWP) between user- and
kernel- level threads.
Each LWP is mapped to one kernel-level thread
The thread library (user level) multiplexes
(schedules) user-level threads on the pool of
LWPs for the process.

Only user-level threads currently connected to an LWP
accomplish work
For one process, one LWP is needed for every thread
that may block concurrently in system calls.

25

Solaris 2 Threads

26

Solaris Process

The kernel maintains Process control block, kernel threads, and LWPs.

The user-level threads is maintained in the user space.

27

Linux Threads

Linux refers to them as tasks rather than
threads.

Linux actually does not distinguish between processes
and threads

Thread creation is done through clone() system
call.
Clone() allows a child task to share the address
space of the parent task (process)

A set of parameters decides how much of the parent
process is to be shared with the child.

User-level Pthread implementation is also
available

