
1

COP 4225 Advanced Unix Programming

Synchronization

Chi Zhang
czhang@cs.fiu.edu

2

Cooperating Processes

Independent process cannot affect or be
affected by the execution of another process.
Cooperating process can affect or be affected by
the execution of another process
Advantages of process cooperation

Information sharing
Computation speed-up
Modularity
Convenience

3

Producer-Consumer Problem

Share the variables
Paradigm for cooperating processes,
producer process produces information
that is consumed by a consumer process.

bounded-buffer (circular array) assumes that
there is a fixed buffer size.
A variable counter, initialized to 0 and
incremented each time a new item is added to
the buffer

4

Problem

Concurrent access to shared data may
result in data inconsistency.
Maintaining data consistency requires
mechanisms to ensure the orderly
execution of cooperating processes.

5

Bounded-Buffer: Producer Process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

6

Bounded-Buffer: Consumer Process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

7

Bounded Buffer

The following statements
must be performed atomically.
counter++;
register1 = counter
register1 = register1 + 1
counter = register1

counter--;
register2 = counter
register2 = register2 – 1
counter = register2

8

Bounded Buffer

If both the producer and consumer attempt
to update the buffer concurrently, the
assembly language statements may get
interleaved.

Interleaving depends upon how the
producer and consumer processes are
scheduled.

9

The Critical-Section Problem
Race condition: The situation where several
processes access – and manipulate shared
data concurrently. The final value of the shared
data depends upon which process finishes last.

To prevent race conditions, concurrent processes
must be synchronized.

Each process has a code segment, called
critical section, in which the shared data is
accessed.
Mutual Exclusion – ensure that when one
process is executing in its critical section, no
other process is allowed to execute in its critical
section.

10

Semaphores

Semaphore S – integer variable
can only be accessed via two indivisible (atomic)
operations. (S initialized to be the number of
concurrent processes allowed. S==1 ⇒ Mutex)

wait (S):
while S≤ 0 do no-op;
S--;

signal (S):
S++;

11

Critical Section of n Processes

Shared data:
semaphore mutex; //initially mutex = 1

Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

12

Semaphore Implementation: SpinLock

Busy waiting
Waste of CPU

Useful with Multiple Processors and short lock time
Context Switch is expensive

Disable interrupt and use atomic operations with SMP
spin_lock:

1: lock; decb slp

jns 3f

2: cmpb $0 , slp

pause

jle 2b

jmp 1b

3: …

spin_unlock:

Lock; movb $1, slp

13

Semaphore Implementation

Define a semaphore as a record
typedef struct {

int value;
struct process *L; // a queue of PCB

} semaphore;

Assume two simple operations:
block suspends the process that invokes it.
wakeup(P) resumes the execution of a blocked
process P.

14

Implementation
Semaphore operations now defined as

wait(S):
S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}
o S<0: its magnitude is the number of waiting processes

15

Bounded-Buffer Problem

Shared data
mutex:mutual exclusion for the critical section
full: the number of full buffers; for
synchronization
empty: the number of empty buffers; for
synchronization.

semaphore full, empty, mutex;
Initially:
full = 0, empty = n, mutex = 1

16

Bounded-Buffer Problem Producer
Process

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

17

Bounded-Buffer Problem Consumer
Process

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

18

Critical Regions

High-level synchronization construct
A shared variable v of type T, is declared
as:

v: shared T
Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

While statement S is being executed no

19

Solaris 2 Synchronization

Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.
Uses adaptive mutexes for efficiency when protecting
data from short code segments.

On a multiple processor system, an adaptive mutex starts as a
spinlock. If the thread holding the lock is not currently running,
the calling thread blocks and sleeps until the lock is released.
On a uniprocessor system, the thread always sleep rather than
spin.

Uses condition variables and readers-writers locks when
longer sections of code need access to data.

Multiple threads may read data concurrently.

