

Outline
 Goals
 Hardware Concepts
 Software Concepts
The Client-Server Model
2

Transparency	Description		
Access	Hide differences in data representation and how a resource is accessed		
Location	Hide where a resource is located		
Migration	Hide that a resource may move to another location		
Relocation	Hide that a resource may be moved to another location while in use		
Replication	Hide that a resource may be shared by several competitive users		
Concurrency	Hide that a resource may be shared by several competitive users		
Failure	Hide the failure and recovery of a resource		
Persistence	Hide whether a (software) resource is in memory or on disk		

 More users / resources Geographically scalable Administratively scalable 			
Concept	Example		
Concept Centralized services	Example A single server for all users		
Concept Centralized services Centralized data	Example A single server for all users A single on-line telephone book		

Scaling Techniques (1)

- Hiding communication latencies
 - Asynchronous communication
 - Moving server tasks to clients
- (Server) Distribution
- Replication
 - Increase availability
 - Load balancing
 - Access nearby copy

7

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution

<code-block>Multiprocessor Operating Systems (2)monitor Counter {
private:
int count = 0;
public:
int value() { return count; }
void incr ({ count = count + 1; }
void decr() { count = count - 1; }
}Menotire to protect an integer against concurrent access.</code>

Multicomputer Operating Systems (3)

Synchronization point	Send buffer	Reliable comm. guaranteed?
Block sender until buffer not full	Yes	Not necessary
Block sender until message sent	No	Not necessary
Block sender until message received	No	Necessary
Block sender until message delivered	No	Necessary

Relation between blocking, buffering, and reliable communications.

21

	Distributed OS		Network	Middleware-	
Item	Multiproc.	Multicomp.	OS	based OS	
Degree of transparency	Very High	High	Low	High	
Same OS on all nodes	Yes	Yes	No	No	
Number of copies of OS	1	N	N	N	
Basis for communication	Shared memory	Messages	Files	Model specific	
Resource management	Global, central	Global, distributed	Per node	Per node	
Scalability	No	Moderately	Yes	Varies	
Openness	Closed	Closed	Open	Open	

A comparison between multiprocessor operating systems, multicomputer operating systems, network operating systems, and middleware based distributed systems.

29

