COP 6611 Advanced Operating System

Processes

Chi Zhang
czhang@cs.fiu.edu

Outline
Processes and Threads
Clients
Servers

Code Migration
Software Agents

| ntroduction to Threads

= A processisaprogram in execution
= Program counter, CPU registers, memory maps ...
» Requires hardware support
= High cost of creation and switching

= A thread has |less overhead (CPU context)

» Efficient Inter-thread communication.
= Protect inappropriate accesses of shared data

= Overlap blocking and non-blocking threads
» Parallelism with multiple CPUs
» Better programming structure

Thread Implementation (1)

» User-level threads
= Cheap to create and destroy threads

= Cheap to switch threads
= Occurs through synchronization

= Blocking system call blocks al threads.
= Can't utilize multiple CPUs
= Kernel-level threads
= System call is expensive!
» Hybrid form: Lightweight Process (LWP)
= Kernel isaware of LWPs, but not threads
= LWPs search for runnable threads

Thread Implementation (2)

User space

Kernel space

Thread state

: 7
~
N v
~ ‘
~
N ¢
v

A

% %4,/ Thread

I i
! | i |
- I

ﬁ

LWP executing a thread

Lightweight process

Combining kernel-level lightweight processes and user-level threads.

5

Multithreaded Clients

= Display the data before the communication
completes

» Hide communication latencies

= Separate threads for fetching different parts of
the HTML page

= Faster

» TCP Connections may be set up to different replicas
» Simple programming

Multithreaded Servers (1)

Dispatcher thread

Request dispatched
to a worker thread

Server

Request coming in
from the network >

[ANSIaians

- Worker thread

Operating system

A multithreaded server organized in a dispatcher/worker model.

7

Multithreaded Servers (2)

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls

Three ways to construct a server.
Blocking system calls = make programming easier
Parallelism = improve performance

The X-Window System

Server machine Client machine

Application Xlib interface
A
X protocol

Terminal (includes display X kernel
keyboard, mouse, etc) —

Device drivers

The basic organization of the X Window System

Client-Side Software for Distribution Transparency

invocation request L
Replica 1
\)
—
Replica 2
_J
1’
All replicas see / Replica 3
the same invocation I

A possible approach to transparent replication of aremote
object using a client-side solution. 10

Servers. General Design Issues (1)

Server machine

Client machine

2. Request Register
ﬁ\’fe/V Server endpoint
Client &
| "
1. Askfor M DCE Eﬂk)
endpoint |daemon | tEar:)?emmt

@

Server machine

Client machine

2. Continue

jvi’ce/ » Actual Create
Client || server server for
requested
\ service
Super

>
1. Request server
service

4

()

a) Client-to-server binding using a daemon asin DCE
b) Client-to-server binding using a superserver asin UNIX ;;

Servers. General Design Issues (2)

» Handle communication interrupts
» Exit theclient application
» Send out-of-band data to a separate control
endpoint
» Send out-of-band data with request data
= Stateful Server
= Need to recover the states after a crash
= Cookiesin WWW

12

Object Servers

= Object Creation

= At thefirst invocation request (destroy it if no clients
are bound to it)

= At the server initialization time.

» Threads for Objects
= One for each object (No concurrent data access)
= One for each request
» Threads Creation
» Create on-demand
» Thread pool

13

Object Adaptor (1)

= Object Adaptors
= Group objects per policy

= Unaware of the specific interfaces of the objects they
control

= Now consider the policy of “onethread for each
object”
= Communications between threads takes place by
means of buffers

14

Object Adapter (2)

Server with three objects

Server machine

Object's stub
skeleton)
Organization of an
object server
supporting
different
activation

‘ Object adapter ‘ ‘ Object adapter

policies.

Request
demultiplexer

Local OS

Object Adapter (3)

XXXX_invoke(unsigned in_size, char in_argq], unsigned*

out_size, char* out_argq]])

/* Definition of general message format */
struct message {

long source [* senders identity */

long object_id,; /* identifier for the requested object */
long method_id,; /* identifier for the requested method */
unsigned size; /* total bytes in list of parameters */
char **data; [* parameters as sequence of bytes */

h
/* General definition of operation to be called at skeleton of object */
typedef void (*METHOD_CALL)(unsigned, char* unsigned*, char**);

long register_object (METHOD_CALL call); I* register an object */
void unrigester_object (long object)id); [* unrigester an object */
void invoke_adapter (message *request); /* call the adapter */

The header.h file used by the adapter and any
program that calls an adapter.

16

Object Adapter (4)

typedef struct thread THREAD;

thread *CREATE_THREAD (void (*body)(long tid), long thread_id);

/* hidden definition of a thread */

/* Create a thread by giving a pointer to a function that defines the actual */
/* behavior of the thread, along with a thread identifier */

void get_msg (unsigned *size, char **data);

void put_msg(THREAD *receiver, unsigned size, char **data);
/* Calling get_msg blocks the thread until of a message has been put into its */
/* associated buffer. Putting a message in a thread's buffer is a nonblocking */

[* operation. */

The thread.h file used by the adapter for using threads.

17

Object Adapter (5)

The main part of an
adapter that implements
athread-per-object
policy.

#include <header.h>

#include <thread.h>

#define MAX_OBJECTS 100
#define NULL 0
#define ANY -1

METHOD _CALL invoke[MAX_OBJECTS];
THREAD *root;
THREAD *“thread[MAX_OBJECTS];

void thread _per_object(long object_id) {

message *req, “res;
unsigned size;
char **results;

while(TRUE) {
get_msg(&size, (char®) &req);

/* array of pointers to stubs
/* demultiplexer thread
/* one thread per object

/* request/response message
/I size of messages
/* array with all results

/™ block for invocation request

/* Pass request to the appropriate stub. The stub is assumed to
/* allocate memory for storing the resuits.
(invoke[object_id]*)(req—size, req—data, &size, results);

res = malloc(sizeof(message)+size); /* create response message

res—object_id = object_id;

res—method_id = req.method_id;

res—size = size;
memcpy(res—data, results, size);
put_msg(root, sizeof(res), res);
free(req);

free(*results);

}

/" identify object

/* identify method

/* set size of invocation results
/* copy results into response
/™ append response to buffer
/* free memory of request

/* free memory of results

void invoke_adapter(long oid, message “request) {
put_msg(thread|oid], sizeof(request), request);

N
*/
*/

-

/A

Reasons for Migrating Code

2. Client and server

. communicate
Client

Nl

. . 1. Client fetches code
Service-specific
client-side code

Code repository

The principle of dynamically configuring a client to communicate to aserver. The

client first fetches the necessary software, and then invokes the server. 1

Migration and Local Resources

= A process consists of three segments
= Code, resource and execution

» Three resource-to-machine bindings
» Unattached
» Fastened
» Fixed

» Three process-to-resource bindings
= |dentifier
» Value
= Type

20

10

Models for Code Migration

Weak mobility

Mobility mechanism

Strong mobility

Alternatives for code migration.

Execute at
Sender-initiated " target process
mobility . Execute in

separate process

Execute at
Receiver-initiated . target process
mobility T Execute in

separate process

Migrate process
Senderinitiated " g P

mobility
Clone process

Migrat
\ Receiver-initiated — grate process

mobility ~_

Clone process

21

Migration in Heterogeneous Systems

Push marshalled

Local stack procedure call onto
operations B migration stack
i Local
Procedure B / variables B
Return label
(jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr. Identification
K fromB for proc. B
Local
Parameter - ok;.‘la A
Push procedure values for B variables
call onto program Return label
stack Local stack to caller A
operations A S
Lo&al A values for A
variables
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)

The principle of maintaining a migration stack to support migration of

an execution segment in a heterogeneous environment

22

11

Software Agents in Distributed Systems

Property gﬁgéne%?stg Description
Autonomous Yes Can act on its own
Reactive Yes Responds timely to changes in its environment
Proactive Yes Initiates actions that affects its environment
Communicative Yes Can exchange information with users and other
agents
Continuous No Has a relatively long lifespan
Mobile No Can migrate from one site to another
Adaptive No Capable of learning

Some important properties by which different types of agents

can be distinguished.

23

Agent program

4| endpoint

Agent's

l4— Agent

Agent Technology

Agent platform

v

Management Directory
component

Inter-platform
communication

v,

: ACC
service

Intra-platform
communication

The general model of an agent platform (adapted from [fipa98-mgt]).

>

24

12

Agent Communication Languages (1)

Message purpose Description Message Content
INFORM Inform that a given proposition is true Proposition
QUERY-IF Query whether a given proposition is true Proposition
QUERY-REF Query for a give object Expression
CFP Ask for a proposal Proposal specifics
PROPOSE Provide a proposal Proposal
ACCEPT-PROPOSAL Tell that a given proposal is accepted Proposal ID
REJECT-PROPOSAL Tell that a given proposal is rejected Proposal ID

REQUEST

Request that an action be performed

Action specification

SUBSCRIBE

Subscribe to an information source

Reference to
source

Examples of different message typesin the FIPA ACL [fipa98-acl], giving the purpose

of amessage, along with the description of the actual message content.

25

Agent Communication Languages (2)

Field Value
Purpose INFORM
Sender max@http://fanclub-beatrix.royalty-spotters.nl: 7239
Receiver elke@iiop://royalty-watcher.uk:5623
Language Prolog
Ontology genealogy
Content female(beatrix),parent(beatrix,juliana,bernhard)

A simple example of a FIPA ACL message sent between two agents
using Prolog to express genealogy information.

26

13

