
1

Processes

COP 6611 Advanced Operating System

Chi Zhang

czhang@cs.fiu.edu

2

Outline
Processes and Threads

Clients

Servers

Code Migration

Software Agents

2

3

Introduction to Threads

A process is a program in execution
� Program counter, CPU registers, memory maps …
� Requires hardware support
� High cost of creation and switching

A thread has less overhead (CPU context)
� Efficient Inter-thread communication.

� Protect inappropriate accesses of shared data
� Overlap blocking and non-blocking threads
� Parallelism with multiple CPUs
� Better programming structure

4

Thread Implementation (1)
User-level threads

� Cheap to create and destroy threads
� Cheap to switch threads

� Occurs through synchronization
� Blocking system call blocks all threads.
� Can’t utilize multiple CPUs

Kernel-level threads
� System call is expensive!

Hybrid form: Lightweight Process (LWP)
� Kernel is aware of LWPs, but not threads
� LWPs search for runnable threads

3

5

Thread Implementation (2)

Combining kernel-level lightweight processes and user-level threads.

6

Multithreaded Clients
Display the data before the communication
completes

� Hide communication latencies

Separate threads for fetching different parts of
the HTML page

� Faster
� TCP Connections may be set up to different replicas
� Simple programming

4

7

Multithreaded Servers (1)

A multithreaded server organized in a dispatcher/worker model.

8

Multithreaded Servers (2)

Three ways to construct a server.

Blocking system calls
�

make programming easier

Parallelism
�

improve performance

Parallelism, nonblocking system callsFinite-state machine

No parallelism, blocking system callsSingle-threaded process

Parallelism, blocking system callsThreads

CharacteristicsModel

5

9

The X-Window System

The basic organization of the X Window System

10

Client-Side Software for Distribution Transparency

A possible approach to transparent replication of a remote
object using a client-side solution.

6

11

Servers: General Design Issues (1)

a) Client-to-server binding using a daemon as in DCE
b) Client-to-server binding using a superserver as in UNIX

3.7

12

Servers: General Design Issues (2)
Handle communication interrupts

� Exit the client application
� Send out-of-band data to a separate control

endpoint
� Send out-of-band data with request data

Stateful Server
� Need to recover the states after a crash
� Cookies in WWW

7

13

Object Servers
Object Creation

� At the first invocation request (destroy it if no clients
are bound to it)

� At the server initialization time.

Threads for Objects
� One for each object (No concurrent data access)
� One for each request

Threads Creation
� Create on-demand
� Thread pool

14

Object Adaptor (1)
Object Adaptors

� Group objects per policy
� Unaware of the specific interfaces of the objects they

control

Now consider the policy of “one thread for each
object”

� Communications between threads takes place by
means of buffers

8

15

Object Adapter (2)

Organization of an
object server
supporting
different
activation
policies.

16

Object Adapter (3)

The header.h file used by the adapter and any
program that calls an adapter.

/* Definition of general message format */
struct message {

long source /* senders identity */
long object_id; /* identifier for the requested object */
long method_id; /* identifier for the requested method */
unsigned size; /* total bytes in list of parameters */
char **data; /* parameters as sequence of bytes */

};

/* General definition of operation to be called at skeleton of object */
typedef void (*METHOD_CALL)(unsigned, char* unsigned*, char**);

long register_object (METHOD_CALL call); /* register an object */
void unrigester_object (long object)id); /* unrigester an object */
void invoke_adapter (message *request); /* call the adapter */

XXXX_invoke(unsigned in_size, char in_args[], unsigned*
out_size, char* out_args[])

9

17

Object Adapter (4)

The thread.h file used by the adapter for using threads.

typedef struct thread THREAD; /* hidden definition of a thread */

thread *CREATE_THREAD (void (*body)(long tid), long thread_id);
/* Create a thread by giving a pointer to a function that defines the actual */
/* behavior of the thread, along with a thread identifier */

void get_msg (unsigned *size, char **data);
void put_msg(THREAD *receiver, unsigned size, char **data);
/* Calling get_msg blocks the thread until of a message has been put into its */
/* associated buffer. Putting a message in a thread's buffer is a nonblocking */
/* operation. */

18

Object Adapter (5)

The main part of an
adapter that implements
a thread-per-object
policy.

10

19

Reasons for Migrating Code

The principle of dynamically configuring a client to communicate to a server. The
client first fetches the necessary software, and then invokes the server.

20

Migration and Local Resources
A process consists of three segments

� Code, resource and execution

Three resource-to-machine bindings
� Unattached
� Fastened
� Fixed

Three process-to-resource bindings
� Identifier
� Value
� Type

11

21

Models for Code Migration

Alternatives for code migration.

22

Migration in Heterogeneous Systems

The principle of maintaining a migration stack to support migration of
an execution segment in a heterogeneous environment

3-15

12

23

Software Agents in Distributed Systems

Some important properties by which different types of agents
can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other
agents

YesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to
all agents?

Property

24

Agent Technology

The general model of an agent platform (adapted from [fipa98-mgt]).

13

25

Agent Communication Languages (1)

Examples of different message types in the FIPA ACL [fipa98-acl], giving the purpose
of a message, along with the description of the actual message content.

Reference to
source

Subscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

26

Agent Communication Languages (2)

A simple example of a FIPA ACL message sent between two agents
using Prolog to express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

