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Abstract
Large open-source software repositories represent complex
multi-agent ecosystems where developers, code, and arti-
facts continuously interact and evolve. However, understand-
ing these dynamic interactions and leveraging them for auto-
mated issue resolution remains challenging. We present Git-
TemporalAI, a system that constructs a temporal knowledge
graph from repository data to capture the dynamic relation-
ships between multiple entities (developers, files, issues, and
pull requests) and their evolution over time. Our system em-
ploys a multi-agent architecture consisting of an embedding
agent to encode repository entities, a search agent to traverse
the temporal graph, and a reasoning agent that synthesizes
contextual information to answer queries. By leveraging his-
torical context and modeling relationships between reposi-
tory entities, the system provides insights into repository evo-
lution. Evaluation on a large open-source project, PyTorch
Geometric, demonstrates GitTemporalAI’s ability to improve
query responses, particularly for tasks involving temporal
reasoning and understanding repository dynamics.

Introduction
Large open-source software repositories are complex sys-
tems that evolve through the interactions of multiple agents:
developers, code, issues, and pull requests. These reposito-
ries contain valuable information about software develop-
ment patterns, problem-solving approaches, and team dy-
namics. However, extracting and utilizing this knowledge ef-
fectively remains challenging. First, repository data is inher-
ently temporal and interconnected. A single code change can
trigger multiple effects throughout the repository ecosys-
tem: it may introduce or resolve bug reports, spawn fea-
ture requests in the issue tracker, necessitate documenta-
tion updates, and involve collaborative efforts from sev-
eral developers over time (Bird et al. 2008). Traditional ap-
proaches that analyze repository data as separate entities
often miss crucial temporal and relational patterns (Thung
et al. 2013). Second, while large language models (LLMs)
have shown promise in code understanding and generation,
they lack the ability to reason about the complex histori-
cal context of repository evolution (Feng et al. 2020). De-
spite their broad knowledge, LLMs face fundamental limi-
tations in understanding repository evolution. The complex
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Figure 1: System architecture of GitTemporalAI. The sys-
tem constructs a temporal knowledge graph from GitHub
repository data to capture relationships between repository
entities. Three agents work in coordination: an embedding
agent for vector representations, a search agent for graph
traversal and retrieval, and a reasoning agent for LLM-based
response generation.

interplay between code changes, developer decisions, and
task dependencies creates a dynamic context that emerges
from repository-specific history rather than general patterns.
These repository-specific evolutionary patterns exist outside
the static code snapshots in LLMs’ training data, making
them inherently undiscoverable through general language
modeling alone.

Consider a developer trying to understand why a previ-
ously working code component suddenly fails after a repos-
itory update. A traditional LLM can only offer generic trou-
bleshooting suggestions based on common patterns. Under-
standing such issues requires analyzing the temporal evolu-
tion of the codebase - tracking when specific changes were
introduced, how they propagated through different compo-
nents, and which developers were involved in related modifi-
cations. This historical context is crucial for pinpointing the
root cause and developing effective solutions, yet remains
beyond the reach of conventional LLMs that process queries
in isolation.

To address these challenges, we propose GitTemporalAI,
a system that combines temporal knowledge graphs with
LLMs to create an intelligent repository analysis frame-
work. As shown in Figure 1, our approach integrates three



key components. First, we construct a temporal knowledge
graph that captures both the static and dynamic relationships
among repository entities, including developers, files, issues,
and pull requests (Wu et al. 2022). This graph models the
evolving connections within the repository, with nodes rep-
resenting key entities and edges encoding interactions such
as code dependencies, commit relationships, and issue ref-
erences. Temporal attributes are embedded into the graph
structure to track changes over time, ensuring a detailed rep-
resentation of repository evolution (Cai et al. 2022, 2024).

Second, we employ a multi-agent architecture to pro-
cess repository data effectively. This architecture consists
of three specialized agents: An embedding agent transforms
repository entities into 768-dimensional semantic embed-
dings using the nomic-embed-text model (Nussbaum et al.
2024), ensuring that the temporal context is preserved in
the vector space. A search agent performs temporal graph
traversal, leveraging the knowledge graph to identify rel-
evant historical patterns and relationships among entities,
creating a temporal context. A reasoning agent, powered by
LLMs (Brown et al. 2020), synthesizes insights by combin-
ing this temporal context with advanced reasoning capabil-
ities. Finally, we implement a progressive analysis system
that processes queries in multiple rounds, progressively re-
fining the search scope and enhancing the response quality.

We evaluate GitTemporalAI on PyTorch Geometric1, a
popular graph neural network library with over 500 contrib-
utors. Our results demonstrate the system’s ability to lever-
age historical repository context to improve automated issue
resolution and facilitate tasks such as developer recommen-
dation and bug analysis.

Related Work
Conversational Agents
Recent advances in software repository mining have sparked
interest in developing intelligent agents to make reposi-
tory data more accessible and actionable. Several studies
have explored different approaches to this challenge: MSR-
Bot (Abdellatif, Badran, and Shihab 2020) pioneered the
use of natural language interfaces for repository query-
ing but was limited to predefined patterns and intents. Re-
pairnator (Urli et al. 2018) demonstrated autonomous bug
fixing through repository mining. More recent work has
explored using LLMs for repository-related tasks, though
primarily focusing on code-centric applications like code
generation (Tian et al. 2023), code review (Tufano et al.
2022), and bug fixing (Fan et al. 2023). However, these ap-
proaches have generally focused on specific repository tasks
rather than providing comprehensive repository intelligence.
Additionally, existing solutions typically operate as single
agents with limited ability to reason about temporal rela-
tionships and complex interactions between repository enti-
ties. Our work extends this line of research by introducing a
multi-agent architecture that combines temporal knowledge
graphs with LLMs, enabling more sophisticated analysis of
repository evolution patterns and interactions between de-
velopers, code, and artifacts over time.

1https://github.com/pyg-team/pytorch geometric

Knowledge Graphs in Software Engineering
Knowledge graphs have gained significant attention in soft-
ware engineering for their ability to capture complex rela-
tionships in software systems. Consider a typical scenario
in the PyTorch Geometric repository: a performance bug is
reported in a graph convolution operation, affecting mul-
tiple dependent modules. Early work by Li et al. (2017)
constructed knowledge graphs from open-source projects
that could represent this as static relationships between
the bug report, affected code files, and developer commu-
nications, though their approach lacked integration with
modern AI techniques. More recent approaches have ap-
plied knowledge graphs to specific software engineering
tasks: Du et al. (2018) used knowledge graphs for tracking
vulnerability relationships in software components, while
Zhang et al. (2020) employed them for bug localization
through code-knowledge graph attention mechanisms. Han
et al. (2018) demonstrated knowledge graph embedding
techniques for reasoning about software weaknesses. While
these approaches show the potential of knowledge graphs in
software engineering, they typically focus on narrow appli-
cations and do not address the broader challenge of mod-
eling temporal evolution in software repositories. In con-
trast, our work combines temporal knowledge graphs with
a multi-agent LLM to capture and reason about the dy-
namic nature of software development, enabling more so-
phisticated analysis of repository evolution and interactions
between various software entities over time.

Methods
Temporal Knowledge Graph Construction
The graph contains five types of nodes: code chunks, pull
requests, commits, issues, and users. Code chunk nodes
vc ∈ V represent distinct components within Python source
files, including classes, functions, methods, and module-
level imports, each preserving their hierarchical structure.
Pull request nodes vp ∈ V track the lifecycle of code change
proposals from creation to closure. Issue nodes vi ∈ V
store problem reports and feature requests. Commit nodes
vm ∈ V represent atomic changes to the codebase, while
user nodes vu ∈ V represent repository contributors.

The edges E encode five primary relationship types:
code dependencies that capture import relationships be-
tween code chunks, commit relationships that link atomic
changes to specific code chunks, pull request connections
that associate commits within their respective PRs, issue
references that connect reported problems to affected code
chunks, and authorship edges that link developers to their
contributions. Each edge maintains temporal attributes to
track when these relationships were established or modified.

Semantic Embedding Generation
To enable semantic search and analysis over the knowledge
graph, we develop an embedding strategy that captures code
semantics, contextual relationships, and temporal evolution.
We use the nomic-embed-text model (Nussbaum et al. 2024)
to generate 768-dimensional embeddings for each node in
the graph.



For code chunk nodes, we generate embeddings from
a structured text representation that includes several com-
ponents in sequence: metadata about the chunk (file path,
chunk type, and name), defined symbols within the chunk’s
scope, dependency information showing import relation-
ships with other modules, the actual code content of the
chunk, and finally any relevant historical modifications that
affected this specific chunk of code.

For pull request nodes, we create embeddings from the
pull request title, description, and associated commits in-
cluding both commit messages and specific file changes. For
issue nodes, we combine the issue title, description, and any
explicit references to code chunks or files mentioned in the
issue text.

The resulting embeddings form a semantic space that pre-
serves both code relationships and temporal evolution, en-
abling efficient similarity computations for search and anal-
ysis tasks.

Progressive Multi-Round Analysis System
To effectively leverage the temporal knowledge graph and
semantic embeddings, we develop a progressive analysis
system that processes queries through three rounds of in-
creasing specificity (Yang et al. 2024). This approach en-
ables efficient processing of large repositories while main-
taining high response accuracy. The system coordinates a
search agent for knowledge graph traversal and a reason-
ing agent for result synthesis, with round-specific objectives
guiding their interaction.

Our system operates through three progressive rounds,
each with specific search strategies and objectives:

• Round 1 (Initial Scanning) begins with the search agent
performing broad retrieval using the knowledge graph
embeddings to identify file chunks, issues, and pull re-
quests that match the query. The search agent returns a
candidate set. The reasoning agent then analyzes these
candidates to select 5 most relevant items by evaluating
their metadata and descriptions, establishing initial direc-
tions for deeper investigation.

• Round 2 (Focused Analysis) narrows the search scope
based on Round 1 findings. The search agent uses the em-
beddings and node metadata to identify closely related
content. For file nodes, this includes examining the fine-
grained code chunks and their associated metadata such
as modification history and import relationships. For pull
requests, the agent examines the commit history, changed
files, and specific code modifications. For issues, it con-
siders file references and issue descriptions. This seman-
tic similarity-based search helps establish relationships
between different repository entities for deeper investi-
gation.”

• Round 3 (Deep Investigation) accesses the complete
content and context of the most relevant items. For code
files, this includes the full source code, chunked into logi-
cal components (classes, functions, methods), along with
their modification history. For pull requests, it examines
the complete commit history with line-by-line changes.
For issues, it analyzes the full description and referenced

Table 1: Node Types and Their Key Attributes in the Knowl-
edge Graph

Node Type Key Attributes Count
Source Files Path, symbols, in/out degree 12,486
Pull Requests Title, state, timestamps 9,607
Commits Hash, message, timestamp 27,986
Issues Title, state, timestamps 3,561
Users Contribution stats, roles 2,854

Table 2: Temporal Characteristics of Key Events

Event Type Temporal Information
Code Changes Commit timestamps, sequential ordering
Issue Lifecycle Creation, updates, resolution times
PR Process Creation, review, merge timestamps
Dependencies Import relationship evolution
User Activity Contribution patterns over time

files. The reasoning agent then generates responses using
this comprehensive repository context, including specific
code references, relevant changes, and associated discus-
sions.

The system progressively enhances queries by incorporat-
ing key terms and identifiers from relevant results in previ-
ous rounds. This refinement process helps focus the search
while maintaining important contextual information.

Result Integration and Memory Management Results
from each round are integrated using a priority-based merg-
ing strategy that adds new findings first while selectively re-
taining relevant results from previous rounds. The system
enforces a round-specific limit on retained results: up to 15
results from Round 2 and 5 from Round 3, preventing infor-
mation overload while maintaining context. A shared mem-
ory structure enables coordination between the embedding
agent, search agent, and reasoning agent by maintaining the
sequence of queries, retrieved contexts, and generated re-
sponses. This integration approach allows GitTemporalAI to
refine its focus while preserving relevant historical and con-
textual information from earlier exploration phases.

Experiment
Dataset
We evaluate GitTemporalAI on PyTorch Geometric, a pop-
ular open-source graph neural network library. Table 1 sum-
marizes the primary node types and their key characteristics
in our graph. The edge distribution in Table 2 shows how our
embedding approach preserves various temporal aspects of
repository events, enabling our progressive analysis system
to reason about temporal relationships effectively.

Evaluation Setup
We evaluate GitTemporalAI through 30 queries related
to PyTorch Geometric, spanning five key dimensions of
software repository analysis: temporal evolution, cross-
component interactions, bug and issue patterns, API usage,



and performance characteristics. These queries examine dif-
ferent abstraction levels, from specific implementation de-
tails to broader architectural patterns, providing comprehen-
sive coverage of both technical depth and historical context.
• Temporal Analysis (6 queries): Questions tracking the

evolution of components over time, such as changes to
implementations, documentation, and feature sets.

• Cross-Component Relationships (6 queries): Queries
examining dependencies and interactions between differ-
ent modules within the repository.

• Bug and Issue Resolution (6 queries): Questions
about how specific bugs, compatibility issues, and user-
reported problems were addressed.

• API Usage Patterns (6 queries): Queries investigating
API changes, common pitfalls, and guidelines for using
different components.

• Performance Optimization (6 queries): Questions
about computational bottlenecks, scalability improve-
ments, and efficiency enhancements.

The evaluation compares two configurations:
• Baseline LLM: GPT-4o with standard prompting, with-

out access to repository information
• GitTemporalAI: Our full system incorporating temporal

knowledge graph, semantic embeddings, and progressive
multi-round analysis

Evaluation Metrics To ensure unbiased evaluation, we em-
ploye an independent GPT-4o model as an expert evalu-
ator to assess the responses from both systems. Each re-
sponse pair is evaluated on four key dimensions as fol-
lows: (1) Technical Accuracy & Depth: Correctness of tech-
nical details and depth of explanation. (2) Historical Con-
text:Effective use of repository history and temporal infor-
mation. (3) Evidence & References: Citation of specific
commits, issues, or code changes. (4) Completeness: Overall
coverage of the query’s requirements.

For each query, the evaluator assign scores on a 1–10 scale
for both systems and provided detailed reasoning for the as-
sessment. This evaluation approach allows us to quantita-
tively compare system performance while capturing qualita-
tive insights about their strengths and limitations.

Results
Our evaluation of GitTemporalAI demonstrates the effec-
tiveness of combining temporal knowledge graphs with a
multi-agent architecture for repository intelligence. The sys-
tem is evaluated against a baseline large language model that
lacked access to temporal repository information. Figure 2
summarizes the overall performance comparison.

Analysis of performance by query type revealed varying
effectiveness of the multi-agent architecture, as shown in Ta-
ble 3. While the baseline model showed competitive perfor-
mance in API usage queries, it was generally less effective
across other categories. In contrast, GitTemporalAI demon-
strated consistent performance across different query types,
with powerful results in temporal and bug-related queries.

This superior performance stems from our system’s rich
historical representation, which tracks detailed line-level

Figure 2: Performance Comparison

Table 3: Performance Comparison by Query Type

Query Type GitTemporalAI Baseline
Temporal 8.33 7.17
Cross-Component 8.50 7.33
Bug Issue 8.50 6.33
API Usage 8.00 7.33
Performance 8.33 6.83

changes and commit contexts in the temporal knowledge
graph. The comprehensive issue-to-code mapping approach
further enhances bug-related query performance by main-
taining explicit relationships between issue reports and af-
fected code components. These results demonstrate the ef-
fectiveness of our multi-agent architecture, which shows
particular strength in queries requiring temporal understand-
ing and bug analysis. GitTemporalAI’s consistent perfor-
mance across all categories, compared to the baseline’s vari-
able effectiveness, validates its robust approach to repository
intelligence tasks.

Conclusion
In this work, we have presented GitTemporalAI, a system
that combines temporal knowledge graphs and LLMs to an-
alyze and leverage the complex dynamics of multi-agent in-
teractions in software repositories. By constructing a tempo-
ral knowledge graph to model evolving relationships among
repository entities and employing a progressive multi-agent
architecture, our system demonstrates the ability to address
diverse repository intelligence tasks effectively.

GitTemporalAI’s current implementation faces computa-
tional limitations, particularly in embedding generation for
large repositories with extensive histories. Additionally, the
system’s focus on Python repositories leaves room for ex-
pansion to multilingual codebases. Future work includes 1)
improving the efficiency of GitTemporal and 2) extending to
support more complex repository ecosystems and exploring
its applications in other domains, such as multi-agent col-
laborations and dynamic knowledge systems. By bridging
the gap between structured temporal data and the reason-
ing capabilities of LLMs, GitTemporalAI offers a promising
direction for advancing intelligent software repository anal-
ysis.



References
Abdellatif, A.; Badran, K.; and Shihab, E. 2020. MSRBot:
Using bots to answer questions from software repositories.
Empirical Software Engineering, 25: 1834–1863.
Bird, C.; Pattison, D.; D’Souza, R.; Filkov, V.; and Devanbu,
P. 2008. Latent social structure in open source projects. In
Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of software engineering, 24–35.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language models
are few-shot learners. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS ’20. Red Hook, NY, USA: Curran Associates
Inc. ISBN 9781713829546.
Cai, B.; Xiang, Y.; Gao, L.; Zhang, H.; Li, Y.; and Li, J.
2022. Temporal knowledge graph completion: A survey.
arXiv preprint arXiv:2201.08236.
Cai, L.; Mao, X.; Zhou, Y.; Long, Z.; Wu, C.; and Lan,
M. 2024. A Survey on Temporal Knowledge Graph: Rep-
resentation Learning and Applications. arXiv preprint
arXiv:2403.04782.
Du, D.; Ren, X.; Wu, Y.; Chen, J.; Ye, W.; Sun, J.; Xi, X.;
Gao, Q.; and Zhang, S. 2018. Refining traceability links
between vulnerability and software component in a vulner-
ability knowledge graph. In Web Engineering: 18th Inter-
national Conference, ICWE 2018, Cáceres, Spain, June 5-8,
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Appendix
Evaluation Queries
Temporal Analysis Queries
1. “How has the GCN implementation in

torch geometric.nn.conv.GCNConv evolved since
its first introduction?”

2. “What were the major changes to the MessagePassing
base class over time?”

3. “What are the key milestones in the development of
torch geometric.datasets?”

4. “How has the documentation for torch geometric.utils
changed?”

5. “How has the feature set of torch geometric.utils been
expanded since its inception?”

6. “Trace the evolution of graph neural network models
available in PyG.”

Cross-Component Analysis Queries
1. “Which modules depend on

torch geometric.nn.conv.GATConv implementation?”
2. “What’s the relationship between DataLoader implemen-

tations and sampling methods?”
3. “How do the implementations of different convolutional

layers interact with PyG’s utils?”
4. “What impact do transforms have on the performance of

dataset preprocessing?”
5. “How does torch geometric.data interact with PyG’s

neural network modules?”
6. “Examine the integration of torch geometric.transforms

with DataLoader for efficient data processing.”

Bug and Issue Analysis Queries
1. “What common issues were reported with the Graph-

SAGE implementation?”
2. “How were memory leaks in torch geometric.data.Data

addressed over time?”
3. “How have issues related to dataset loading been re-

solved in PyG?”
4. “What are the most frequent user-reported problems with

torch geometric.sampler modules?”
5. “Identify the resolution process for compatibility issues

between different PyG versions.”
6. “What solutions have been implemented to address the

challenges of graph sampling in PyG?”

API Usage Queries
1. “How has the interface of torch geometric.transforms

evolved?”
2. “What breaking changes were introduced in the Neigh-

borSampler API?”
3. “What are the common pitfalls when using

torch geometric.data.Data?”
4. “How did the Python version upgrades affect PyG API

compatibility?”

5. “How has the API for torch geometric.nn.conv changed
to accommodate new graph convolution techniques?”

6. “What are the guidelines for using
torch geometric.datasets in custom applications?”

Performance Analysis Queries
1. “What optimizations were made to the cluster gcn.py im-

plementation?”
2. “How has the memory efficiency of PyG’s basic opera-

tions improved?”
3. “What specific changes were made to enhance the scala-

bility of large graphs in PyG?”
4. “What were the computational bottlenecks identified in

PyG’s Transform classes and how were they addressed?”
5. “Evaluate the performance improvements in the latest

versions of PyG’s sampling methods.”
6. “What are the most significant performance gains

achieved through updates to torch geometric.data?”


